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 SUMMARY 

 Stress  is  a  universal  phenomenon  with  significant  implications  for  various  health 

 problems.  Therefore,  developing  reliable  and  accessible  methods  to  assess  and  monitor  stress 

 and  mental  health  is  crucial.  Recently,  speech  has  been  proposed  as  a  stress  measure  due  to 

 its  production  being  affected  by  multiple  stress-related  physiological  processes.  The  main 

 objective  of  this  dissertation  is  to  identify  the  potential  of  speech  as  a  measure  of  stress  by 

 addressing limitations in the existing literature and conducting a series of targeted studies. 

 In  Chapter  2  ,  we  conducted  network  analyses  on  speech  features  pre-  and  post-stress 

 induction,  as  well  as  on  individual  changes  in  each  speech  feature.  The  pre-  and  post-networks 

 showed  harmonics-to-noise  ratio  (HNR)  as  a  central  component,  while  the  change  network 

 revealed  jitter  as  the  only  direct  connection  between  speech  features  and  changes  in  negative 

 affect.  This  study  highlights  the  complex  relationships  between  speech  parameters  and  stress, 

 setting the stage for confirmatory investigations. 

 Chapter  3  employed  a  cognitively  challenging  task  with  blocks  containing  either  neutral 

 or  negative  feedback  to  investigate  stress  effects  on  speech  features.  Results  showed  a 

 significant  increase  in  Fundamental  Frequency  (F0)  and  HNR,  and  a  significant  decrease  in 

 shimmer  during  the  negative  feedback  condition.  These  results  contribute  to  the  understanding 

 of  stress  effects  on  specific  acoustic  speech  features  in  a  well-controlled  but  ecologically-valid 

 stress  setting.  This  study  is  a  solid  step  toward  the  generalization  of  these  findings  to  real-life 

 settings. 
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 In  Chapter  4  ,  we  developed  the  Ghent  Semi-spontaneous  Speech  Paradigm  (GSSP)  to 

 obtain  speech  samples  closer  to  free  speech  while  maintaining  experimental  control.  The 

 GSSP  is  a  picture  description  task.  We  validated  the  GSSP  by  comparing  it  to  both 

 read-out-loud  and  everyday  speech  samples,  showing  that  speech  from  the  GSSP  is 

 acoustically  similar  to  everyday  speech  samples  and  distinct  from  read-out-loud  speech. 

 Specifically,  we  propose  that  the  GSSP  should  be  the  advised  method  of  collecting  speech  in 

 experimental  settings,  generating  results  that  would  be  directly  implementable  in  real-world 

 scenarios. 

 In  Chapter  5  we  exposed  participants  to  different  stress  induction  paradigms  (Cyberball 

 and  MIST)  to  assess  heterogeneity  from  a  stressor  perspective.  We  found  changes  in  F0, 

 speech  rate,  and  jitter  during  the  MIST  paradigm,  which  elicited  additional  self-reported  stress 

 and  physiological  stress  responses,  but  not  during  the  Cyberball  paradigm,  which  primarily 

 affected  self-reported  negative  affect.  The  results  indicate  that  observed  speech  features  are 

 robust  in  semi-guided  speech  (as  compared  to  previous  studies  using  read-out-loud  speech) 

 and  sensitive  to  stressors  eliciting  additional  physiological  stress  responses,  rather  than  solely 

 increases  in  negative  affect.  This  highlights  the  promise  of  speech  as  a  tool  for  measuring 

 stress  in  everyday  settings,  considering  its  affordability,  non-intrusiveness,  and  ease  of 

 collection. 

 In  Chapter  6  ,  we  discuss  the  potential  impact  of  speech  as  a  biosignal  or  biomarker  in 

 precision  psychiatry,  emphasizing  its  accessibility  and  affordability.  We  propose  that  speech, 

 as  a  marker  for  stress  as  a  transdiagnostic  risk  factor,  could  be  the  missing  link  in  fine-tuning 
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 systems  for  high-risk  monitoring  and  just-in-time  interventions  (JITAIs)  if  implemented  securely 

 and appropriately. Practical and ethical implications are also addressed. 

 In  summary,  this  dissertation  investigated  the  potential  of  speech  analysis  as  a  stress 

 biomarker,  providing  a  foundation  for  future  research  in  this  area.  We  identified  specific  speech 

 features  and  investigated  how  they  interact  under  stress  (Chapter  2),  validated  these  features 

 using  read-out-loud  speech  and  negative  social  feedback  (Chapter  3),  developed  a  new 

 methodology  to  collect  naturalistic  speech  samples  (Chapter  4),  validated  the  speech  features 

 in  semi-freely  spoken  speech  and  in  different  stressor  paradigms  (Chapter  5),  and  presented  a 

 context  of  future  implementations  for  speech  as  a  biomarker  for  stress  and  precision  psychiatry 

 (Chapter  6).  Our  findings  support  the  potential  of  speech  analysis  as  a  non-invasive,  affordable, 

 and  easily  accessible  tool  for  detecting  and  monitoring  acute  stress  and  hold  promise  for 

 improving  mental  health  care  and  overall  well-being  through  novel  monitoring  methods  and 

 interventions. 

 7 



 SAMENVATTING 

 Stress  is  een  universeel  fenomeen  met  aanzienlijke  gevolgen  voor  verschillende 

 gezondheidsproblemen.  Daarom  is  het  cruciaal  om  betrouwbare  en  toegankelijke  methoden  te 

 ontwikkelen  om  stress  en  geestelijke  gezondheid  te  beoordelen  en  te  monitoren.  Onlangs  is 

 spraak  voorgesteld  als  een  stressmaat  vanwege  de  betrokkenheid  van  meerdere 

 stressgerelateerde  fysiologische  processen  in  de  productie  ervan.  Het  belangrijkste  doel  van  dit 

 proefschrift  is  het  potentieel  van  spraak  als  stressmaat  te  identificeren  door  beperkingen  in  de 

 bestaande literatuur aan te pakken en een reeks gerichte onderzoeken uit te voeren. 

 In  Hoofdstuk  2  voerden  we  netwerkanalyses  uit  op  spraakkenmerken  voor  en  na 

 stressinductie,  evenals  op  individuele  veranderingen  in  elk  spraakkenmerk.  De  voor-  en 

 na-netwerken  toonden  harmonics-to-noise  ratio  (HNR)  als  een  centraal  onderdeel,  terwijl  het 

 veranderingsnetwerk  jitter  onthulde  als  de  enige  directe  verbinding  tussen  spraakkenmerken  en 

 veranderingen  in  negatieve  affectiviteit.  Deze  studie  benadrukt  de  complexe  relaties  tussen 

 spraakparameters en stress en vormt het uitgangspunt voor bevestigende onderzoeken. 

 Hoofdstuk  3  maakte  gebruik  van  een  cognitief  uitdagende  taak  met  blokken  met 

 neutrale  of  negatieve  feedback  om  stress-effecten  op  spraakkenmerken  te  onderzoeken. 

 Resultaten  toonden  een  significante  toename  van  de  Fundamental  Frequency  (F0)  en  HNR,  en 

 een  significante  afname  van  shimmer  tijdens  de  negatieve  feedback  conditie.  Deze  resultaten 

 dragen  bij  aan  het  begrip  van  stress-effecten  op  specifieke  akoestische  spraakkenmerken  in 
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 een  goed  gecontroleerde  maar  ecologisch  valide  stressomgeving.  Deze  studie  vormt  een  solide 

 stap in de richting van de generalisatie van deze bevindingen naar real-life situaties. 

 In  Hoofdstuk  4  ontwikkelden  we  het  Ghent  Semi-spontaneous  Speech  Paradigm 

 (GSSP)  om  spraakopnames  die  dichter  bij  vrije  spraak  liggen  te  verkrijgen,  terwijl  we 

 experimentele  controle  behouden.  Het  GSSP  is  een  taak  waarin  afbeeldingen  luidop 

 omschreven  worden.  We  valideerden  het  GSSP  door  het  te  vergelijken  met  zowel  voorlees-  als 

 alledaagse  spraakopnames,  waarbij  we  aantoonden  dat  spraak  uit  het  GSSP  akoestisch 

 vergelijkbaar  is  met  alledaagse  spraakopnames  en  verschilt  van  voorlees-spraak.  We  stellen 

 specifiek  voor  dat  het  GSSP  de  geadviseerde  methode  zou  moeten  zijn  voor  het  verzamelen 

 van  spraak  in  experimentele  settings,  om  resultaten  die  direct  implementeerbaar  zijn  in 

 real-world scenario's te genereren. 

 In  Hoofdstuk  5  stelden  we  deelnemers  bloot  aan  verschillende 

 stressinductieparadigma's  (Cyberball  en  MIST)  om  heterogeniteit  vanuit  het  perspectief  van 

 stressoren  te  beoordelen.  We  vonden  veranderingen  in  F0,  spraaksnelheid  en  jitter  tijdens  het 

 MIST-paradigma,  dat  bijkomende  zelfgerapporteerde  stress  en  fysiologische  stressreacties 

 opriep,  maar  niet  tijdens  het  Cyberball-paradigma,  dat  voornamelijk  invloed  had  op 

 zelfgerapporteerde  negatieve  affectiviteit.  De  resultaten  geven  aan  dat  waargenomen 

 spraakkenmerken  robuust  zijn  in  semi-begeleide  spraak  (in  vergelijking  met  eerdere 

 onderzoeken  met  voorlees-spraak)  en  gevoelig  zijn  voor  stressoren  die  extra  fysiologische 

 stressreacties  oproepen,  in  plaats  van  uitsluitend  toenames  van  negatieve  affectiviteit.  Dit 

 benadrukt  de  potentie  van  spraak  als  hulpmiddel  voor  het  meten  van  stress  in  alledaagse 

 situaties, gezien de betaalbaarheid, lage intrusiviteit en het gemak van verzameling. 
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 In  Hoofdstuk  6  bespreken  we  de  mogelijke  impact  van  spraak  als  biosignaal  of 

 biomarker  in  precisiepsychiatrie,  waarbij  we  de  nadruk  leggen  op  toegankelijkheid  en 

 betaalbaarheid.  We  stellen  voor  dat  spraak,  als  marker  voor  stress  als  een  transdiagnostische 

 risicofactor,  de  ontbrekende  schakel  zou  kunnen  zijn  in  het  verfijnen  van  systemen  voor 

 monitoring  van  hoge  risico  patiëntengroepen  en  interventies  op  het  juiste  moment  (JITAIs) 

 indien  op  een  veilige  en  geschikte  manier  geïmplementeerd.  Praktische  en  ethische  implicaties 

 worden ook besproken. 

 Samenvattend  heeft  dit  proefschrift  het  potentieel  van  spraakanalyse  als 

 stressbiomarker  onderzocht  en  een  basis  gelegd  voor  toekomstig  onderzoek  op  dit  gebied.  We 

 identificeerden  specifieke  spraakkenmerken  en  onderzochten  hoe  ze  zich  onder  stress 

 onderling  verhouden  (hoofdstuk  2),  valideerden  deze  kenmerken  met  behulp  van 

 voorlees-spraak  en  negatieve  sociale  feedback  (hoofdstuk  3),  ontwikkelden  een  nieuwe 

 methodologie  om  natuurlijke  spraakopnames  te  verzamelen  (hoofdstuk  4),  valideerden  de 

 spraakkenmerken  in  semi-vrij  gesproken  spraak  en  in  verschillende  stressorparadigma's 

 (hoofdstuk  5)  en  presenteerden  een  context  voor  toekomstige  implementaties  voor  spraak  als 

 biomarker  voor  stress  en  precisiepsychiatry  (hoofdstuk  6).  Onze  bevindingen  ondersteunen  het 

 potentieel  van  spraakanalyse  als  een  niet-invasieve,  betaalbare  en  gemakkelijk  toegankelijke 

 tool  voor  het  detecteren  en  monitoren  van  acute  stress  en  de  potentie  voor  het  verbeteren  van 

 de  geestelijke  gezondheidszorg  en  het  algemeen  welzijn  door  middel  van  nieuwe 

 monitoringmethoden en interventies. 
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 Chapter  1 

 General Introduction 

 1.1. Stress 

 Stress  is  a  common  phenomenon,  experienced  by  all  on  a  frequent  basis.  Stress  is  our 

 body’s  psychological,  physiological,  and  behavioral  response  to  any  kind  of  threat  or  demand. 

 It  can  be  triggered  by  a  wide  variety  of  factors  that  elicit  stress,  such  as  financial  concerns, 

 child  care,  interpersonal  dynamics,  or  major  life  events,  which  we  refer  to  as  stressors  . 

 Nowadays,  in  our  fast-paced  and  ever-changing  society,  stress  has  become  an  increasingly 

 relevant topic, especially since it plays a significant role in both our physical and mental health. 

 While  stress  is  a  normal  and  adaptive  part  of  life  that  can  help  us  cope  with  challenges 

 and  motivate  us  to  achieve  our  goals,  it  is  important  to  note  when  stress  becomes  detrimental. 

 Specifically,  when  stress  becomes  more  chronic,  it  can  lead  to  a  wide  range  of  health  problems 

 including  cardiovascular  disease,  coronary  heart  disease,  anxiety  disorders,  depression, 

 autoimmune  disease,  and  neurodegenerative  disorders,  among  others  (Bhushan  et  al.,  2020; 
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 Brosschot  et  al.,  2017;  Cohen  et  al.,  2007;  Juster  et  al.,  2010;  Kappen  et  al.,  2023;  Slavich  & 

 Irwin, 2014). 

 In  this  dissertation,  we  predominantly  focus  on  psychosocial  stressors,  as  they  play  a 

 critical  role  in  contributing  to  stress-induced  (mental)  health  complications  for  several  reasons 

 (Epel  et  al.,  2018;  Kogler  et  al.,  2015).  As  humans  are  inherently  social  beings,  social 

 interactions  and  the  need  to  belong  are  essential  aspects  of  our  lives  (Baumeister  &  Leary, 

 1995).  Psychosocial  stressors  can  disrupt  these  fundamental  human  needs,  significantly 

 impacting  an  individual's  well-being.  Additionally,  these  stressors  are  pervasive  in  everyday  life, 

 leading  to  a  higher  probability  of  chronic  exposure  compared  to  other  types  of  stressors,  such 

 as  physical  (e.g.,  receiving  electrical  shocks)  or  cognitive  stressors  (e.g.,  reaction  time  tasks). 

 This  chronic  exposure  to  psychosocial  stressors  further  explains  their  dominant  presence  in 

 stress-related  diseases  (Dupre  et  al.,  2015;  Melchior  et  al.,  2007;  Phelan  et  al.,  1991;  Tennant, 

 2001). 

 To  better  understand  stress,  many  different  models  of  stress  have  been  developed.  In 

 this  dissertation,  the  stress  response  will  be  explained  from  the  transactional  model  of  stress 

 and  coping  by  Lazarus  and  Folkman  (1984).  This  model  is  chosen  because  1)  it  highlights  the 

 dynamic  nature  of  stress  by  acknowledging  the  ongoing,  reciprocal  relationship  between  the 

 individual  and  their  environment,  making  it  highly  relevant  to  real-life  situations,  and  2)  it  is 

 applicable  across  various  contexts,  including  health,  work,  and  relationships,  making  it  a 

 versatile  choice  for  exploring  stress  in  different  settings,  and  3)  it  takes  individual  differences 

 into accounts, allowing for a more personalized approach to understanding stress. 
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 In  the  seminal  transactional  model  of  stress  and  coping  by  Lazarus  and  Folkman,  stress 

 is  determined  by  a  person’s  primary  appraisal  of  a  stimulus  (Lazarus  &  Folkman,  1984).  With 

 this  primary  appraisal,  an  individual  determines  whether  something  could  pose  a  potential 

 threat  to  their  well-being  or  not.  Potential  threats  can  come  from  many  different  parts  of  life  and 

 affect  many  different  aspects  of  one’s  well-being,  including  but  not  limited  to  physical, 

 emotional, social, cognitive, spiritual, behavioral, and financial well-being. 

 In  addition  to  the  primary  appraisal,  a  secondary  appraisal  will  be  applied  to  any 

 stimulus  that  poses  a  direct  threat  to  the  individual’s  well-being,  irrespective  of  the  nature  of 

 the  threat.  Primary  and  secondary  appraisals  are  distinguished  for  conceptual  purposes,  with 

 neither  being  more  important  than  the  other  or  that  one  occurs  before  the  other  (Carpenter, 

 2016).  The  secondary  appraisal  concentrates  on  how  an  individual  can  respond  to  and  cope 

 with  the  situation  (Carpenter,  2016;  Lazarus  &  Folkman,  1984).  This  evaluation  involves 

 assessing  both  internal  and  external  resources,  such  as  cognitive  capacity,  personal  skills, 

 social  support  networks,  and  available  options  to  deal  with  the  stressor  (Carpenter,  2016; 

 Lazarus  &  Folkman,  1984).  Secondary  appraisal  can  lead  to  different  outcomes  depending  on 

 the  perceived  availability  and  effectiveness  of  coping  resources  (Folkman  &  Moskowitz,  2004; 

 Lazarus  &  Folkman,  1984).  Coping  strategies  can  be  either  problem-focused  (aimed  at 

 changing  the  situation  itself)  or  emotion-focused  (aimed  at  changing  the  relation  to  the 

 situation).  The  effectiveness  of  one’s  coping  strategies  depends  on  the  context  and  the 

 individual’s  ability  to  adapt  to  changing  circumstances.  If  an  individual  believes  they  have 

 adequate  resources  and  effective  coping  strategies  to  deal  with  the  stressor,  they  may 

 experience  less  stress  and  negative  emotions.  On  the  other  hand,  if  the  person  perceives  their 
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 coping  resources  as  inadequate  or  ineffective,  they  may  experience  heightened  stress  and 

 negative emotions (Folkman & Moskowitz, 2004; Lester et al., 1994). 

 Figure  1 

 Schematic illustration of the transactional model of stress by Lazarus & Folkman 

 Note.  Image courtesy of Lydia G. Roos 

 Experienced  stress  is  the  result  of  an  unfolding  of  multiple  biological  processes  that 

 comprise  the  stress  response  system  (Brosschot  et  al.,  2017;  Cohen  et  al.,  2007;  Lazarus  & 

 Folkman,  1984).  The  stress  response  system  is  made  up  of  multiple  biological  systems  that 

 work  in  a  coordinated  fashion  to  help  an  organism  pick  up  and  respond  to  environmental  cues 

 (  stressors  )  in  order  to  best  respond  (e.g.,  fight  or  flight)  to  reduce  the  potential  for  harm.  This 

 could  include  physical  threats,  but  as  we  have  evolved,  this  system  has  become  sensitive  in 
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 responding  to  cues  that  confer  not  only  physical  danger  but  also  social  danger.  Furthermore,  it 

 is  important  to  note  that  the  stress  response  will  not  exclusively  be  elicited  by  true  and 

 imminent  dangers,  but  it  can  activate  even  before  a  stressor  is  faced.  This  allows  us  to  prepare 

 for  an  anticipated  threat,  which  means  the  stress  response  system  can  still  be  activated 

 regardless of whether an actual threat occurs. 

 1.2. Components of Stress 

 The  multidimensional  nature  of  stress  can  be  decomposed  into  three  main  components: 

 psychological,  behavioral,  and  physiological,  which  will  be  shortly  explained  here  after  which 

 we  will  discuss  how  each  individual  component  is  used  in  stress  measurement.  The 

 physiological,  behavioral,  and  psychological  aspects  of  stress  are  interconnected,  together 

 forming  a  comprehensive  system  that  helps  individuals  cope  with  and  adapt  to  stressors.  All 

 responses,  physiological,  behavioral,  and  psychological,  depend  on  a  large  network  of  brain 

 systems  involved  in  appraisal,  emotion,  and  memory,  including  key  forebrain  areas  such  as  the 

 amygdala,  prefrontal  cortex,  and  hippocampus  (Braun,  2011;  Joëls  &  Baram,  2009;  Myers  et 

 al., 2017; Sousa & Almeida, 2012). 

 1.2.1. Physiological Component 

 The  physiological  component  of  stress  involves  the  activation  of  key  pathways,  such  as 

 the  hypothalamic-pituitary-adrenal  (HPA)  axis  and  the  sympathetic  nervous  system  (SNS),  as 

 part  of  the  autonomic  nervous  system  (ANS)  which  mediate  the  body's  adaptive  functions  in 

 5 



 response  to  stress.  This  includes  the  release  of  stress  hormones  (cortisol  and  adrenaline), 

 increased  heart  rate,  elevated  blood  pressure,  and  other  bodily  responses  to  help  prepare  the 

 individual  to  confront  or  escape  the  stressor,  often  known  as  the  "fight  or  flight"  response 

 (Cannon, 1939; Kyrou & Tsigos, 2009). 

 1.2.2. Behavioral Component 

 The  behavioral  component  of  stress  encompasses  the  observable  actions  and  reactions 

 that  individuals  exhibit  when  encountering  stressors.  Responses  can  include  emotional 

 outbursts,  such  as  anger  or  frustration,  or  changes  in  body  language,  such  as  tensing  up  or 

 pacing.  Individuals  may  also  seek  social  support  or  display  other  actions  that  reflect  their 

 attempt  to  manage  or  adapt  to  the  stressor.  Crucially,  these  brain  networks  interact  with  the 

 hypothalamus  and  brainstem,  integrating  behavioral  responses  with  the  physiological  reactions 

 mediated  by  the  HPA  axis  and  autonomic  activity  (Joëls  &  Baram,  2009;  McKlveen  et  al.,  2015; 

 Myers  et  al.,  2017;  Ulrich-Lai  &  Herman,  2009).  It's  important  to  note  that  these  responses  can 

 be automatic or deliberate, and their effectiveness in dealing with stress may vary. 

 1.2.3. Psychological Component 

 The  psychological  component  involves  cognitive  processes,  such  as  perception, 

 appraisal,  and  emotion  regulation,  as  well  as  the  emotional  experiences  related  to  stress,  such 

 as  anxiety,  rumination,  need  to  belong,  or  negative  affect  (Williams,  2007;  Zwolinski,  2012).  The 

 psychological  component  influences  how  individuals  perceive  and  react  to  stressors,  which  in 

 turn  affects  their  physiological  and  behavioral  responses.  However,  there  is  a  limited  correlation 
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 between  physiological  and  psychological  stress  reactions,  possibly  due  to  the  subjective 

 nature  (i.e.,  dependent  on  appraisal)  of  self-reported,  experienced  stress  (Campbell  &  Ehlert, 

 2012; Zwolinski, 2012). 

 In  this  dissertation,  we  will  mainly  focus  on  the  physiological  and  psychological  aspects 

 of  stress  to  ensure  the  successful  induction  of  stress  in  our  studies,  while  speech  lies  at  the 

 intersection  of  the  behavioral  and  physiological  components.  It  is  crucial  to  recognize  that 

 these  different  components  are  deeply  interlinked,  and  are  therefore  hard  to  approach 

 completely irrespective of each other. 

 1.3. Stress Measurement 

 Due  to  this  multidimensional  nature  of  stress,  composed  of  three  main  components  (i.e., 

 psychological,  behavioral,  and  physiological),  stress  measurement  methods  have  been 

 developed  specifically  targeting  each  of  these  components.  In  the  next  segments,  we  will 

 outline  each  individually,  shortly  highlighting  their  pros  and  cons.  Refer  to  Table  1  for  a 

 summarized overview of stress measurement techniques. 

 1.3.1. Psychological methods 

 These  methods  assess  stress  by  asking  individuals  to  report  their  stress  levels  through 

 (self-report)  questionnaires  or  interviews.  Examples  of  such  methods  include  the  Perceived 

 Stress  Scale  (PSS),  Self-Assessment  Manikin  (SAM),  Positive  and  Negative  Affect  Schedule 

 (PANAS),  and  the  Profile  Of  Mood  States  (POMS),  which  use  items  such  as  “  In  the  last 
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 week/month  how  often  have  you  ..  been  upset  because  of  something  that  happened 

 unexpectedly?  /  felt  nervous  and  stressed?  ”  or  visual  analog  scales  (VAS)  that  visually  depict 

 one’s  feelings  (Bradley  &  Lang,  1994;  Cohen  et  al.,  1994;  McNair  et  al.,  1971;  Monroe,  2008; 

 Rossi  &  Pourtois,  2012;  Watson  et  al.,  1988).  The  advantages  of  self-report  methods  include 

 that  they  are  relatively  easy  and  inexpensive  to  administer,  can  provide  information  about  an 

 individual’s  subjective  experience  of  stress,  and  can  be  used  in  a  variety  of  settings,  and  will 

 therefore  likely  remain  an  important  feature  in  multimethod  approaches  (Abbas  et  al.,  2021). 

 Interview-based  measures,  on  the  other  hand,  are  accurate  yet  costly  and  time-consuming 

 (Cohen  et  al.,  1997;  Dohrenwend,  2006;  G.  S.  Shields  &  Slavich,  2017).  The  limitations  of 

 assessing  the  subjective  experience  of  stress  are  that  they  are  by  definition  influenced  by  a 

 multitude  of  systematic  measurement  errors,  such  as  response  biases  (e.g.,  social  desirability; 

 Razavi,  2001;  Welte  &  Russell,  1993).  Moreover,  these  measures  are  mostly  retrospective  in 

 nature  and  can  be  influenced  by  an  individual’s  mood  and  motivation  at  the  exact  time  of 

 administration,  making  it  susceptible  to  momentary  changes  and  less  representative  of  one’s 

 general state of being over a broader range of time (Monroe, 2008; Monroe & Slavich, 2016). 

 1.3.2. Behavioral methods 

 These  methods  assess  stress  by  observing  an  individual’s  behavior,  such  as  changes  in 

 task  performance,  body  gestures,  or  facial  expressions  that  occur  in  response  to  stress.  The 

 advantages  of  behavioral  methods  include  that  they  can  provide  information  about  how  stress 

 affects  an  individual’s  behavior,  and  they  can  be  used  in  real-world  settings.  Limitations  include 

 that  these  measures  often  require  difficult  remote  setups  in  order  to  have  high-quality 
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 recordings  (e.g.,  video),  or  for  people  to  come  into  a  laboratory  (which  is  impractical  and 

 sometimes  even  not  possible  in  cases  of  a  pandemic,  disease,  or  remote  living).  Besides,  even 

 though  some  behavioral  bodily  patterns  (such  as  facial  expressions  and  body  gestures)  are 

 manifested  in  response  to  stress,  they  may  also  be  subject  to  intentional  or  even  partially 

 conscious  control  (Hobfoll,  2004;  Lin  et  al.,  1985;  Ryder  &  Chentsova-Dutton,  2012). 

 Consequently,  related  recordings  may  also  contain  systematic  errors  when  used  to  estimate 

 the magnitude of the stress response (Giannakakis et al., 2022). 

 1.3.3. Physiological methods 

 These  methods  assess  stress  by  measuring  physiological  responses  that  are 

 associated  with  the  stress  response,  such  as  changes  in  heart  rate,  blood  pressure,  cortisol 

 levels,  and  electrodermal  activity  (Arza  et  al.,  2019;  Giannakakis  et  al.,  2022).  This  dissertation 

 mostly  uses  electrodermal  activity  and  cardiac-related  measures,  such  as  skin  conductance 

 levels,  skin  conductance  response  rates,  and  event-related  cardiac  responses.  Electrodermal 

 activity  (EDA)  is  focused  on  the  conductance  of  one’s  skin,  which  is  affected  by  the  amount  of 

 sweat  that  is  present.  This  is  relevant,  as  sweat  glands  are  predominantly  innervated  by  the 

 sympathetic  chain  of  the  ANS  (Dawson  et  al.,  2017;  S.  Shields  et  al.,  1987).  The  EDA  signal  is  a 

 pure  index  of  sympathetic  activation  (and  arousal)  and  is  built  up  of  tonic  (slow)  and  phasic 

 (fast)  components,  from  which  we  can  extract  several  measures  such  as  skin  conductance 

 level  (SCL)  and  skin  conductance  responses  (SCRs),  each  responding  to  different  types  of 

 stimuli  (Braithwaite  et  al.,  2013).  An  electrocardiogram  (ECG)  is  a  waveform  that  represents 

 cardiac  activity  (Sherwood,  2003).  The  ECG  is  composed  of  different  components  and  is 
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 closely  related  to  the  ANS  (Klabunde,  2011;  Sherwood,  2003).  Variation  in  time  between  two 

 consecutive  heartbeats  is  described  as  heart  rate  variability  (HRV)  and  changes  therein  are 

 directly  linked  to  changes  in  the  ANS  (Camm  et  al.,  1996;  Malik  &  Camm,  1990)  and  are  also 

 recently  considered  in  an  event-related  manner,  which  allows  for  a  more  nuanced 

 understanding  of  how  the  ANS  reacts  to  individual  stressors  (Gunther  Moor  et  al.,  2010;  van 

 der Veen et al., 2019). 

 The  advantages  of  physiological  methods  include  that  they  are  objective,  can  be  used 

 in  real-world  settings  (e.g.,  cardiac  and  skin  conductance),  and  can  provide  information  about 

 the  body’s  stress  response.  The  limitations  include  that  they  may  not  always  be  feasible  to  use 

 in  certain  settings  as  they  often  require  individual  context  to  be  accurately  interpreted,  and  can 

 be  expensive,  impractical,  intrusive,  and  unreliable  in  real-world,  daily  life  settings  (Arza  et  al., 

 2019;  Giannakakis  et  al.,  2022;  Slavich  et  al.,  2019).  Moreover,  there  is  still  lacking 

 understanding  concerning  the  consistency  of  some  of  these  metrics,  with  for  instance  cortisol 

 responses  being  strongly  influenced  by  factors  such  as  hormones  associated  with  the 

 menstrual  cycle  (Kirschbaum  &  Hellhammer,  1994),  anticipatory  appraisal  (Gaab  et  al.,  2005), 

 and lack translatability to chronic metrics of stress (Lee et al., 2015). 

 1.3.4. Multimethod approach 

 Lastly,  it  should  be  noted  that  all  of  these  different  measures  of  stressor  exposure, 

 stress  perceptions,  and  psychological,  and  physiological  stress  responses  are  only  moderately 

 associated  with  each  other  (Mauss  et  al.,  2005).  Especially  when  taking  into  account  the 

 different  ways  stress  comes  to  show.  For  example,  sometimes  when  you  get  stressed  it  affects 
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 your  mood  (psychological)  and  sleep  (physiological),  other  times  you  get  sick  more  easily 

 (immune),  and  other  times  you  have  a  hard  time  focusing  (cognitive).  Therefore,  focusing  on 

 only  one  method  can  give  a  severely  limited  view  of  one’s  stress  levels.  In  addition,  it  is  unclear 

 which  of  these  methods  and  measures  is  most  accurate  and  closest  related  to  health 

 outcomes,  as  it  differs  between  health  outcomes,  between  individuals,  and  whether  the  focus 

 is  on  short  or  long-term  health  outcomes  (Cohen  et  al.,  1997;  Epel  et  al.,  2018;  Rehkopf  et  al., 

 2010).  Considering  the  multidimensional  nature  of  stress,  and  that  it  is  being  experienced  on 

 multiple  levels  such  as  social,  psychological,  and  physiological,  there  have  been  developments 

 in  a  multilevel  approach  to  measuring  stress  (Arza  et  al.,  2019;  Epel  et  al.,  2018;  Monroe  & 

 Slavich,  2016).  Despite  a  certain  approach  potentially  yielding  accurate  stress  indices,  one 

 should  consider  the  trade-off  between  accuracy  and  intrusiveness  for  the  individual.  For 

 example,  the  limitation  of  self-report  data  being  momentary  could  be  tackled  by  increasing  the 

 frequency  of  measurement,  but  this  significantly  increases  the  task  load  for  individuals. 

 Moreover,  the  limitation  of  physiological  data  requiring  expensive  specialized  apparatus,  trained 

 professionals,  and  limiting  freedom  of  movement  due  to  wired  electrodes  are  being  tackled  by 

 the  development  of  wearable  devices  (e.g.,  smartwatches),  but  this  comes  at  a  trade-off  in 

 signal  quality  and  predictive  capacity.  Lastly,  people  from  marginalized  communities,  such  as 

 low-income  families,  are  often  underrepresented  in  studies  given  the  burden  of  many  study 

 designs  and  methodologies  (e.g.,  physical  lab  presence),  yielding  insufficient  knowledge  and 

 ability  to  measure  stress  in  populations  that  need  it  most  (L.  T.  Clark  et  al.,  2019).  Therefore, 

 there  is  a  persisting  need  for  a  novel  method  that  is  non-intrusive,  remote-friendly,  easy  to 

 collect,  affordable,  and  yet  accurate.  Measuring  stress  through  one's  speech  could  be  a 

 promising  approach  to  address  some  of  the  limitations  and  trade-offs  mentioned  earlier. 
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 Indeed,  due  to  the  multimodal  nature  of  stress,  it  is  unlikely  that  one  method  alone  can  fulfill  all 

 requirements  and  achieve  the  highest  accuracy.  However,  speech  has  the  potential  to  both 

 serve  as  a  valuable  indicator  of  daily  stress  and  can  act  as  a  complementary  measure  in 

 multimodal systems. 

 Table 1. 

 A  schematic  (concise)  overview  of  different  stress  measurement  techniques,  their 
 corresponding dimension of stress, and respective pros and cons. 

 Dimension  Measurement 
 Method 

 Pros  Cons 

 Psychological  Self-report, 
 Interview-based 

 Easy and inexpensive, 
 Reflects subjective 
 experience, Can be used in 
 varied settings, Accurate 
 (for interview-based) 

 Susceptible to response biases, 
 Mostly retrospective, Influenced 
 by mood and motivation at 
 administration, Costly and 
 time-consuming (for 
 interview-based) 

 Behavioral  Observation of 
 behaviors 

 Reflects real-world 
 behavior 

 Requires remote setups or lab 
 presence, Gestures and 
 expressions can be controlled, 
 Contains systematic errors for 
 stress estimation 

 Physiological  Heart rate, 
 blood pressure, 
 cortisol levels, 
 electrodermal 
 activity 

 Objective, Can be used in 
 real-world settings 

 Can be expensive, impractical, 
 intrusive, Require context for 
 interpretation, Unreliable in daily 
 settings, Lacking understanding 
 of consistency, Affected by 
 various factors (e.g., menstrual 
 cycle, anticipatory)appraisal 
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 1.4.  Speech  as  a  potential  method  for  stress 

 measurement 

 Speech  production  is  an  intricate  process  involving  multiple  physiological  systems  and 

 components  of  the  body.  The  process  begins  with  the  conscious  decision  of  what  to  say, 

 considering  factors  such  as  word  choice  and  tone  of  voice.  The  physical  aspect  of  speech 

 production,  however,  occurs  more  automatically,  with  the  body  modulating  the  tension  of 

 various  muscles  to  expel  air  through  the  vocal  folds  and  vocal  tract,  generating  sound  waves 

 (Titze & Martin, 1998). 

 Voice  production  is  described  as  the  most  complex  of  innately  acquired  human  motor 

 skills  and  processing  relies  on  the  collaboration  of  approximately  100  muscles  innervated  by 

 multiple  cranial  and  spinal  nerves  (Duffy,  2000),  multiple  subcortical  and  cortical  brain  regions 

 (Carlson  &  Birkett,  2017;  Jürgens,  2002),  and  cardiorespiratory  processes  (Câmara  & 

 Griessenauer,  2015;  Monkhouse,  2005).  As  a  result,  speech  is  a  psychophysiological  process 

 influenced  by  both  external  and  internal  stressors  (Hansen  &  Patil,  2007;  Van  Puyvelde  et  al., 

 2018). 

 Van  Puyvelde  and  colleagues  further  argue  that  vocal  and  stress  responses  share 

 similar  underlying  cardiorespiratory  processes  governed  by  the  ANS.  The  parasympathetic 

 vagal  system,  which  is  critical  for  stress  regulation  (e.g.,  Berntson  et  al.,  n.d.;  Thayer  &  Lane, 

 2000,  2009),  is  also  involved  in  voice  and  speech  coordination  (e.g.,  Câmara  &  Griessenauer, 

 2015).  This  connection  positions  voice  output  as  a  psychophysiological  response  that  is  part  of 
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 the  human  integrative  psychophysiological  stress  system  (Thayer  &  Lane,  2000,  2009).  This  has 

 resulted  in  an  emerging  field  of  identifying  how  speech  is  affected  by  stress,  as  well  as  stress 

 detection  from  speech  samples  (Giddens  et  al.,  2013;  Slavich  et  al.,  2019;  Sondhi  et  al.,  2015; 

 Van  Puyvelde  et  al.,  2018;  Zhou  et  al.,  2001).  The  potential  of  speech  as  a  promising  avenue  for 

 stress  research  is  evident,  however,  it  remains  a  relatively  young  field  with  vastly 

 heterogeneous results (Giddens et al., 2013; Van Puyvelde et al., 2018). 

 1.4.1. Practical implications 

 The  detection  of  stress  through  speech  recordings  comes  with  several  perks  that  have 

 been  identified  and  that  have  been  noted  as  limitations  in  other  methodologies  (Slavich  et  al., 

 2019;  Van  Puyvelde  et  al.,  2018).  First,  it  is  affordable  .  No  specialized,  expensive,  apparatus 

 are  needed  to  collect  or  analyze  speech  samples.  Any  microphone  will  be  able  to  record 

 samples  that  contain  valuable  information,  however,  it  should  be  noted  that  microphone  and 

 sample  quality  will  affect  the  information  density.  This  ties  in  with  the  advantage  of  this  data 

 being  easily  accessible  .  There  is  a  ubiquity  of  high-quality  microphones,  with  the  increasing 

 prevalence  of  microphones  in  everyday  objects,  that  makes  speech  data  more  accessible  and 

 reliable.  Moreover,  these  samples  can  be  easily  obtained  from  everyday  sources  like  phone 

 calls  or  meetings,  thoroughly  simplifying  the  data  collection  process.  Ethical  concerns  should 

 be  taken  into  account,  though,  see  Chapter  6  and  Slavich  et  al.  (2019).  Stress  measurements 

 through  speech  would  also  have  great  potential  in  its  applicability  in  natural  settings  .  Due  to 

 the  ability  to  collect  this  data  and  apply  this  method  in  real-world  environments,  it  vastly 

 increases  the  ecological  validity  of  stress  measurement.  Moreover,  speech  data  can  be 
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 collected  without  physical  contact  or  the  connection  of  electrodes,  making  it  non-intrusive  . 

 This  reduces  discomfort  and  inconvenience  for  participants  and  may  provide  more  ecologically 

 valid  indices  of  one’s  actual  physical  state  as  compared  to  controlled  lab  environments  and 

 highly  intrusive  physiological  measurement  methods.  Speech  samples  are  also  highly 

 information  dense;  containing  a  lot  of  information,  even  in  relatively  short  samples.  Therefore,  a 

 measure  could  be  swift  ,  and  easily  implemented  on  a  high-frequency  basis.  This  provides 

 quick  and  efficient  stress  evaluations  without  the  need  for  in-person  contact  and  no  high 

 demand  for  the  participant  .  Lastly,  this  enables  us  to  use  speech  analysis  for  the  passive 

 monitoring  of  stressors  in  daily  life  ,  which  could  have  significant  health  implications,  without 

 the day-to-day demand for participants and patients being too big. 

 1.4.2.  Definition  of  speech  features  and  existing  research  on 

 their link to stress 

 Over  the  past  several  decades,  researchers  have  sought  to  understand  the  impact  of 

 stress  on  speech  and  to  identify  specific  speech  features  that  change  under  stress.  In  this 

 section,  we  will  provide  an  overview  of  the  speech  features  that  have  been  explored  in  the 

 literature  (i.e.,  Fundamental  Frequency,  Jitter,  Shimmer,  Harmonics-to-noise  Ratio,  and  Speech 

 Rate),  explaining  their  significance  and  how  they  are  affected  by  stress.  This  specific  set  of 

 speech  features  has  been  chosen  due  to  multiple  reasons.  First,  they  have  been  described 

 most  commonly  in  the  context  of  stress  research,  as  summarized  in  reviews  by  Giddens  and 

 colleagues  (2013)  and  Van  Puyvelde  and  colleagues  (2018).  Second,  these  features  are 

 understandable  and  interpretable.  Other  features  presented  in  the  GeMAPS  configuration  of 
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 OpenSMILE,  a  configuration  specifically  designed  to  contain  features  that  are  useful  for 

 emotion  research,  are  harder  to  interpret  and  link  back  to  physiological  phenomena  (Eyben  et 

 al.,  2015).  Lastly,  we  do  generate  other  features  in  our  paradigms  and  make  these  data  publicly 

 available  for  other  researchers  to  test  on,  but  as  a  matter  of  focus  and  interpretability,  we 

 exclusively  describe  and  performed  data  analyses  on  the  aforementioned  set  of  speech 

 features.  Additionally,  we  will  discuss  the  limitations  of  these  findings,  focusing  on  sample 

 characteristics  and  differences  in  the  stressors  employed  in  the  studies.  A  broader,  overarching 

 examination of the limitations in the literature will be presented in  section 1.4.3  . 

 Before  delving  into  specific  speech  features,  it  is  important  to  understand  the  distinction 

 between  voiced  and  unvoiced  speech,  as  these  two  types  of  sounds  form  the  basis  of  human 

 speech  production.  Voiced  speech  refers  to  the  production  of  speech  sounds  where  the  vocal 

 folds  vibrate,  creating  bursts  of  air.  Air  from  the  lungs  is  modulated,  which  produces  sound  and 

 sets  the  pitch  of  the  voice.  Examples  of  voiced  speech  include  vowels  and  some  consonants, 

 such  as  ‘b’,  ‘d’,  and  ‘g’.  Unvoiced  speech  ,  on  the  other  hand,  involves  speech  sounds 

 produced  without  the  vibration  of  the  vocal  folds.  Instead,  unvoiced  speech  sounds  are  caused 

 by  constriction  or  closure  of  the  vocal  tract  articulators,  such  as  the  tongue,  lips,  and  the 

 glottis,  creating  noise-like  sounds.  Examples  of  unvoiced  speech  sounds  include  consonants 

 such as ‘t’, ‘k’, and ‘s’. 

 1.4.2.1. Fundamental Frequency (F0) 

 Fundamental  Frequency  (F0)  refers  to  the  frequency  of  the  vocal  fold  vibrations,  which 

 determines  the  perceived  pitch  of  the  voice.  When  the  vocal  folds  vibrate  as  air  passes  through 
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 them,  they  generate  a  complex  sound  wave  with  multiple  harmonics.  The  F0  corresponds  to 

 the  rate  at  which  these  vibrations  occur  and  forms  the  basis  for  the  harmonic  structure  of  the 

 voice.  Literature  reviews  concluded  that  F0  shows  a  consistent  increase  in  the  context  of 

 stress,  especially  when  using  well-controlled  experimental  stress  induction  procedures 

 (Giddens  et  al.,  2013;  Van  Puyvelde  et  al.,  2018).  For  example,  Sigmund  collected 

 read-out-loud  speech  samples  from  31  students  before  and  after  a  highly  stressful  oral  exam 

 and  observed  increases  in  F0  with  stress  (Sigmund,  2006).  Increases  in  F0  are  the  most 

 consistent  changes  in  speech  features  observed  and  will  play  a  key  role  in  stress  detection 

 from speech samples. 

 1.4.2.2. Jitter 

 Jitter  refers  to  the  small,  random  fluctuations  in  the  F0  of  the  voice  over  time  (pitch 

 variation).  These  variations  occur  naturally  due  to  the  inherent  instability  in  the  vocal  fold 

 vibrations  during  phonation.  Jitter  is  often  used  as  an  acoustic  measure  of  voice  quality  and 

 can  be  indicative  of  vocal  fold  irregularities  or  vocal  fatigue.  In  general,  a  higher  level  of  jitter  is 

 associated  with  more  rough  or  hoarse  voice  quality,  while  a  lower  level  of  jitter  corresponds  to 

 a  more  stable  and  clear  voice.  In  the  context  of  stress,  decreases  in  jitter  are  sometimes 

 reported  (Giddens  et  al.,  2013;  Mendoza  &  Carballo,  1998;  Van  Puyvelde  et  al.,  2018).  For 

 example,  in  a  study  by  Mendoza  and  Carballo,  82  students  participated  in  three  cognitively 

 challenging  tasks  such  as  tongue-twisters  and  backward  reading  of  the  alphabet.  In  addition  to 

 increases in F0, they observed decreased jitter values (Mendoza & Carballo, 1998). 
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 1.4.2.3. Shimmer 

 Shimmer  refers  to  the  fluctuations  in  the  amplitude  of  the  voice  over  time  (loudness 

 variation).  It  is  a  measure  of  the  inconsistency  in  vocal  fold  vibrations,  which  can  be  caused  by 

 factors  such  as  irregularities  in  vocal  fold  tension,  mass,  or  subglottal  pressure.  Shimmer  is 

 often  used  as  an  acoustic  measure  of  voice  quality  and  can  be  indicative  of  vocal  fold 

 irregularities  or  vocal  fatigue.  Generally,  a  higher  level  of  shimmer  is  associated  with  more 

 breathy  or  weak  voice  quality,  while  a  lower  level  of  shimmer  corresponds  to  a  more  stable  and 

 clear  voice  (J.  Clark  et  al.,  2007;  Titze  &  Martin,  1998;  Van  Puyvelde  et  al.,  2018).  As  such,  jitter 

 and  shimmer  are  often  described  together.  In  the  context  of  stress,  decreases  in  shimmer  are 

 observed,  although  findings  are  mixed  (Giddens  et  al.,  2013;  Van  Puyvelde  et  al.,  2018). 

 Moreover,  shimmer  is  often  studied  in  the  context  of  combined  cognitive  and  emotional  load, 

 but  research  on  the  isolated  effects  of  emotional  load  is  limited  (Van  Puyvelde  et  al.,  2018).  For 

 instance,  in  the  aforementioned  study  by  Mendoza  and  Carballo,  decreases  in  shimmer  were 

 also  observed  during  the  cognitively  challenging  tasks  (Mendoza  &  Carballo,  1998).  In  addition, 

 Orlikoff  has  linked  variation  in  cardiac  amplitude  directly  to  changes  in  shimmer,  stating  that  it 

 accounts for 11.8% of its variability (Orlikoff, 1990). 
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 Figure 2 

 Image  displaying  the  dimension  along  which  variation  occurs  for  the  measures  jitter  (frequency 
 variation) and shimmer (amplitude variation) 

 1.4.2.4. Harmonics-to-noise Ratio (HNR) 

 Harmonics-to-noise  Ratio  (HNR)  is  an  acoustic  measure  used  to  quantify  the  balance 

 between  the  harmonic  and  noise  components  in  human  speech.  HNR  is  an  indicator  of  voice 

 quality,  with  higher  values  representing  a  clearer,  more  harmonic  voice,  and  lower  values 

 suggesting  the  presence  of  more  noise  or  breathiness,  as  also  found  in  breaky,  pathological, 

 and  whispering  voices  (J.  Clark  et  al.,  2007;  Giddens  et  al.,  2013;  Van  Puyvelde  et  al.,  2018). 

 HNR  has  been  shown  to  change  in  people  experiencing  psychological  stress  (or  when 

 combined  with  cognitive  load),  yet  results  are  mixed  in  their  direction  (Giddens  et  al.,  2013; 

 Godin  et  al.,  2012;  Godin  &  Hansen,  2015;  Mendoza  &  Carballo,  1998;  Van  Puyvelde  et  al., 

 2018).  HNR  does  show  consistent  decreases  in  the  context  of  physical  stressors  (any  physical 
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 event  or  stimulus  that  elicits  stress),  indicating  that  it  is  a  potentially  responsive  feature  to 

 physical  changes,  but  needs  more  research  to  gain  clarity  on  its  process,  sensitivity,  and 

 direction (Giddens et al., 2013). 

 1.4.2.5. Speech rate 

 Speech  rate,  or  tempo,  is  the  speed  at  which  a  speaker  produces  words  or  syllables  in 

 a  given  time  period,  typically  measured  in  words  per  minute  or  syllables  per  second.  However, 

 in  order  to  compute  either  of  these  metrics,  one  would  require  the  exact  spoken  words,  which 

 is  a  labor-intensive  task  considering  for  instance  transcriptions.  Therefore,  a  proxy  for  speech 

 rate  is  often  calculated;  Mean  Voiced  Segments  per  Second  (MVSPS  )  .  MVSPS  serves  as  a 

 proxy  for  syllable  rate  because  it  quantifies  the  density  of  voiced  speech  (see  ‘  Voiced  and 

 Unvoiced  speech’)  production  over  time.  Since  syllables  typically  contain  at  least  one  voiced 

 segment  (i.e.,  a  vowel  or  voiced  consonant),  MVSPS  offers  an  estimate  of  the  rate  at  which 

 syllables  are  produced  in  a  speech  sample  (J.  Clark  et  al.,  2007;  Eyben  et  al.,  2015;  Titze  & 

 Martin, 1998). 

 It  is  an  important  parameter  of  speech  prosody  and  can  be  influenced  by  factors  such 

 as  linguistic  context,  cognitive  load,  and  emotional  state.  In  the  context  of  stress,  research  has 

 shown  that  speech  rate  often  increases.  However,  results  are  inconclusive  for  isolated 

 emotional  load,  as  many  former  studies  used  different  types  of  stressors  such  as  speech 

 samples  from  emergency  phone  calls,  a  Stroop  task,  and  cold  pressor  tasks,  and  many  were 

 missing  physiological  and  psychological  reference  measures  to  validate  speakers’  stress  levels 

 (Giddens  et  al.,  2013;  Rothkrantz  et  al.,  2004;  Scherer  et  al.,  2002;  Van  Puyvelde  et  al.,  2018). 
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 For  instance,  Scherer  and  colleagues  conducted  multiple  alterations  of  the  same  computerized 

 task,  distinguishing  psychological  and  cognitive  stressors.  They  observed  an  increased  speech 

 rate  in  the  cognitive  load  condition,  but  not  in  the  emotional  load  condition  (Scherer  et  al., 

 2002).  Despite  the  current  inconsistencies,  the  potential  of  speech  rate  as  a  valuable  indicator 

 of  stress  should  not  be  underestimated.  With  more  targeted  research  and  refined 

 methodologies,  analyzing  speech  rate  could  provide  a  powerful  tool  for  detecting  and 

 assessing stress in various contexts and situations. 

 In  addition  to  MVSPS,  we  will  also  discuss  Mean  Voiced  Segment  Length  (MVSL)  in 

 the  current  dissertation.  MVSL  is  the  average  duration  of  continuously  voiced  sounds,  without 

 any  intervening  unvoiced  speech  sounds  or  pauses.  Therefore,  MVSL  can  provide  information 

 about  the  overall  rhythm  and  pacing  of  one’s  speech  and  can  be  influenced  by  factors  like 

 speaking  style  and  emotional  state.  This  measure  has  not  frequently  been  reported  upon, 

 however,  it  could  yield  unique  insights  into  the  prosodic  aspects  of  speech  under  stress  (see: 

 Eyben et al., 2010, 2015). 

 1.4.3. Limitations of current literature 

 Throughout  the  existing  literature  on  the  effects  of  stress  on  speech,  there  has  been 

 considerable  heterogeneity  in  the  observed  results,  which  can  be  attributed  to  various 

 limitations.  This  dissertation  aims  to  address  these  limitations  by  conducting  multiple  studies, 

 iteratively  expanding  the  targeted  limitations,  which  will  help  understand  the  interplay  between 

 speech  parameters  under  stress  and  yield  more  reliable,  valid,  and  generalizable  results. 

 Several  limitations,  as  described  in  the  literature  (Giddens  et  al.,  2013;  Slavich  et  al.,  2019;  Van 
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 Puyvelde  et  al.,  2018),  include  1)  small  sample  sizes;  2)  the  use  of  vocal  actors  rather  than 

 participants  experiencing  genuine  psychological  stress,  which  affects  the  ecological  validity  of 

 the  findings;  3)  a  lack  of  (high-quality)  stress  labels  and  verification  of  experienced  stress  (e.g., 

 through  physiological  markers  and  self-reports);  4)  a  lack  of  within-participant  designs, 

 therefore  ignoring  the  influence  of  individual  differences  in  stress  reactivity  on  speech  features; 

 5)  a  lack  of  (active)  control/neutral  condition  recordings  to  compare  with  stress  conditions;  6)  A 

 lack  of  (within-study)  consistency  in  the  testing  environment  and  microphone  (i.e.,  signal 

 quality);  7)  using  massive  sets  of  speech  features  that  include  features  lacking  scientific  basis; 

 8)  a  lack  of  understanding  of  the  complex  interplay  between  speech  parameters  and  how  they 

 are  affected  by  stress,  and  9)  a  lack  of  diversity  in  stressors,  generalizing  results  to  a  general 

 stress term. 

 Despite  these  limitations  in  this  relatively  young  field,  some  speech  features  have 

 shown  a  clear  physiological  basis  for  their  connection  to  stress.  Moreover,  interesting  effects 

 have  been  observed,  yet  due  to  the  aforementioned  limitations,  require  validation.  To  address 

 these  limitations,  this  dissertation  presents  multiple  empirical  studies.  Each  study  targets 

 points  1  through  7,  but  some  points  are  targeted  in  different  ways.  In  the  Objectives,  an 

 overview  of  all  chapters  is  presented,  summarizing  their  setup  and  what  they  add  to  the 

 literature. 
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 1.5. Objectives 

 The  main  objective  of  this  dissertation  is  straightforward;  to  identify  the  potential  of 

 speech  as  a  measure  of  stress.  By  evaluating  the  physiological  basis  of  speech  production  and 

 assessing  the  similarities  in  systems  activated  during  a  stress  response,  it  appears  a  promising 

 avenue,  yet  current  results  are  heterogeneous.  In  order  to  generate  results  and  indices  of 

 speech  that  are  valid,  trustworthy,  and  generalizable  in  the  context  of  stress,  we  conducted  a 

 series  of  studies  that  target  these  limitations.  The  results  from  this  dissertation  will  serve  as  a 

 solid basis for this novel method for other researchers to build upon. 

 All  studies  target  limitations  1  through  7,  by  1)  using  large,  statistically-powered 

 samples,  2)  eliciting  stress  in  actual,  non-actor  participants,  3)  validating  stress  inductions 

 using  self-reports  and/or  physiological  responses,  4)  exclusively  using  within-participant 

 designs  to  allow  for  individual  differences,  5)  including  a  neutral  speech  recording  (chapter  2)  or 

 speech  recordings  from  an  active  control  condition  (chapter  3  &  5),  6)  ensuring  consistency  in 

 the  testing  environment  and  using  exclusively  high-quality  microphones,  ensuring  the  quality  of 

 recordings  and  experimental  setup,  and  7)  exclusively  including  speech  features  that  have  been 

 described previously in the literature. 

 The  main  objective  of  Chapter  2  is  to  investigate  the  unique  associations  between  the 

 selected  speech  parameters,  from  read-out-loud  speech,  before  and  after  stress  induction,  and 

 examine  how  changes  in  these  parameters  relate  to  changes  in  self-reported  negative  affect. 

 The  study  aims  to  apply  network  modeling  to  explore  the  complex  interplay  between  speech 
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 parameters  in  the  context  of  psychosocial  stress  in  a  well-controlled  but  ecologically  valid 

 setting, directly targeting limitation number 8. 

 The  primary  goal  of  Chapter  3  is  to  investigate  the  effects  of  stress  on  the  selected 

 speech  features  in  a  controlled,  within-subject  psychosocial  stress  induction  experiment.  The 

 study  also  uses  read-out-loud  speech,  and  its  main  addition  is  the  use  of  an  active  control 

 condition.  This  enables  us  to  generate  results  directly  related  to  the  isolated,  added  effect  of 

 negative  comparison  to  a  cognitively  tasking,  active  control  task,  further  targeting  limitation 

 number 5. 

 Chapter  4  's  main  objective  is  to  develop  and  validate  the  Ghent  Semi-spontaneous 

 Speech  Paradigm  (GSSP),  a  new  method  for  acquiring  semi-guided  (unscripted)  speech  data 

 for  affective-behavioral  research  in  both  experimental  and  real-world  settings.  The  study 

 evaluates  the  validity  of  the  GSSP  through  an  online  task  and  acoustic  analysis,  with  the  aim  of 

 providing  a  valuable  tool  for  capturing  spontaneous  speech.  This  tool  moves  the  entire  field 

 forward, as it directly enables our main objective of reliable, valid, and generalizable results. 

 The  primary  aim  of  Chapter  5  is  to  explore  speech  features  in  semi-guided  speech 

 following  two  distinct  psychosocial  stress  paradigms  (Cyberball  and  MIST)  and  their  respective 

 active  control  conditions.  The  study  investigates  whether  observed  speech  features  are  robust 

 in  semi-guided  speech  and  sensitive  to  stressors  eliciting  additional  physiological  stress 

 responses,  not  solely  increases  in  negative  affect.  This  study  directly  targets  limitation  number 

 9,  while  considering  limitations  4  and  5,  by  presenting  a  multi-day,  multi-paradigm, 

 within-participant  design,  yielding  unique  insights  into  the  heterogeneity  of  results  originating 

 from the use of different stressors. 
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 The  main  objective  of  Chapter  6  is  to  discuss  the  potential  of  speech  as  a  novel  digital 

 biosignal  for  predicting  high-priority  clinical  outcomes  and  delivering  tailored  interventions.  By 

 reviewing  existing  tools  for  extracting  health-relevant  biosignals  from  smartphones  by  analyzing 

 a  person's  voice  and  speech,  the  chapter  emphasizes  the  importance  of  speech  as  a  tool  for 

 measuring stress and predicting clinical outcomes in healthcare and research settings. 

 Together,  these  studies  aim  to  revolutionize  and  advance  the  field  of  stress  research  by 

 comprehensively  examining  the  potential  of  speech  as  a  reliable,  valid,  and  non-intrusive 

 measure  of  stress.  By  systematically  addressing  the  identified  limitations  in  the  current 

 literature,  this  dissertation  seeks  to  provide  a  solid  foundation  for  future  research  in  stress 

 detection  through  speech.  By  exploring  the  complex  interplay  between  speech  parameters, 

 developing  novel  methods  for  obtaining  semi-spontaneous  speech,  and  investigating  the 

 robustness  and  sensitivity  of  speech  features  across  diverse  stressors,  this  body  of  work 

 strives  to  establish  speech  as  a  valuable  biomarker  for  stress.  Ultimately,  these  studies 

 contribute  to  the  development  of  innovative  tools  for  stress  detection  and  prediction,  which  can 

 be  easily  integrated  into  everyday  technology  such  as  smartphones,  enhancing  healthcare  and 

 research  settings  by  offering  accessible,  affordable,  and  unobtrusive  stress  measurement 

 solutions. 
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 2.1. Abstract 

 Recently,  the  possibilities  of  detecting  psychosocial  stress  from  speech  have  been 

 discussed.  Yet,  there  are  mixed  effects  and  a  current  lack  of  clarity  in  relations  and  directions 

 for  parameters  derived  from  stressed  speech.  The  aim  of  the  current  study  is  -  in  a  controlled 

 psychosocial  stress  induction  experiment  -  to  apply  network  modeling  to  (1)  look  into  the 

 unique  associations  between  specific  speech  parameters,  comparing  speech  networks 

 containing  Fundamental  frequency  (F0),  Jitter,  Mean  Voiced  Segment  Length,  and 

 Harmonics-to-Noise  Ratio  (HNR)  pre-  and  post-stress  induction,  and  (2)  examine  how  changes 

 pre-  versus  post-stress  induction  (i.e.,  change  network)  in  each  of  the  parameters  are  related  to 

 changes  in  self-reported  negative  affect.  Results  show  that  the  network  of  speech  parameters 

 is  similar  after  versus  before  the  stress  induction,  with  a  central  role  of  HNR,  which  shows  that 

 the  complex  interplay  and  unique  associations  between  each  of  the  used  speech  parameters  is 

 not  impacted  by  psychosocial  stress  (aim  1).  Moreover,  we  found  a  change  network  (consisting 

 of  pre-post  stress  difference  values)  with  changes  in  Jitter  being  positively  related  to  changes 

 in  self-reported  negative  affect  (aim  2).  These  findings  illustrate  -  for  the  first  time  in  a 

 well-controlled  but  ecologically  valid  setting  -  the  complex  relations  between  different  speech 

 parameters  in  the  context  of  psychosocial  stress.  Longitudinal  and  experimental  studies  are 

 required  to  further  investigate  these  relationships  and  to  test  whether  the  identified  paths  in  the 

 networks are indicative of causal relationships. 
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 2.2. Introduction 

 Stress  is  an  increasingly  relevant  topic  in  modern  society,  with  a  majority  of  people 

 experiencing  regular  stress  symptoms.  Considering  the  broad  range  of  physiological  and 

 psychological  factors  that  are  influenced  by  stress,  a  plethora  of  methods  have  been 

 developed  to  assess  individuals’  stress  levels.  Currently,  commonly  used  methods  determine 

 stress  levels  by  self-report  questionnaires  on  factors  that  are  affected  by  stress  (e.g.,  mood)  or 

 broader  indicators  of  psychological  well-being  (Monroe,  2008).  Besides  self-reports,  stress  is 

 also  commonly  assessed  through  the  measurement  of  biological  processes  involved  with 

 stress  exposure.  The  main  advantage  of  measuring  stress  through  biomarkers,  as  compared  to 

 interviews  and  self-report  instruments,  is  that  these  measures  are  not  subject  to  self-report 

 biases.  Furthermore,  biomarkers  allow  continuous  monitoring  of  stress  levels.  Many  different 

 biological  markers  of  stress  have  been  identified  such  as  heart  rate,  blood  pressure,  cortisol, 

 skin  conductance,  and  many  more  (for  an  extensive  overview,  see:  Fink,  2017;  Shields  & 

 Slavich,  2017).  Even  though  many  of  these  methods  are  highly  effective  in  determining  one’s 

 stress  levels,  they  are  often  costly,  requiring  the  attachment  of  electrodes  (e.g., 

 Electrocardiography;  ECG)  or  the  extraction  of  a  blood  or  saliva  sample,  and  demanding  since 

 they  generally  require  interaction  with  a  physician  or  expert  and  specialized  apparatus  to  collect 

 the  data.  With  the  emerging  market  of  wearables  (e.g.,  smartwatches),  it  has  become 

 increasingly  easy  to  collect  continuous  data  of  stress-related  physiological  markers  such  as 

 heart  rate,  skin  conductance,  and  skin  temperature.  Although  the  quality  of  these  methods  is 

 constantly  improving,  it  is  not  always  evident  to  continuously  collect  this  data  (e.g.,  costs, 

 privacy)  besides  often  reported  problems  with  regards  to  continuity  of  its  accuracy  (e.g.,  loss  of 
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 connection).  Therefore,  the  need  to  further  explore  alternatives  for  stress  measurements 

 remains.  Recently,  speech  analysis  has  been  proposed  as  a  possible  physiological  marker  for 

 stress, however, further research is required (Giddens et al., 2013; Slavich et al., 2019). 

 Speech  production  is  a  complex  process  that  requires  the  involvement  of  many  different 

 parts  of  the  body.  To  produce  speech,  one  first  considers  what  words  to  say,  tone  of  voice,  and 

 many  more  conscious  aspects.  However,  the  practical  part  happens  more  automatically,  which 

 is  the  actual  sound  production.  When  producing  speech,  the  body  modulates  the  tension  of 

 numerous  muscles  to  push  air  through  the  vocal  folds  and  out  the  vocal  tract  to  produce  sound 

 waves  (Titze  &  Martin,  1998).  Since  stress  increases  both  muscle  tension  and  respiration  rate, 

 which  in  turn  influence  speech  production,  it  has  been  proposed  that  stress  should  be 

 detectable  from  the  way  speech  sounds  (Sondhi  et  al.,  2015).  A  major  advantage  of  stress 

 detection  from  speech  is  the  non-intrusive  obtainability  of  speech  data  and  the  possibility  of 

 swift,  cost-effective,  and  remote  stress  assessments.  As  such,  speech  is  considered  a 

 promising psychophysiological measure for stress assessment. 

 However,  relatively  little  is  known  with  regards  to  how  specific  speech  parameters 

 interact  in  a  context  with  or  without  stress,  and  how  this  interaction  of  speech  parameters 

 changes  following  a  stressor.  That  is,  speech  research  in  the  context  of  stress  is  still  in  its 

 infancy  and  has  mostly  flourished  at  the  fundamental  level  of  parameter  identification  and 

 development.  Speech  consists  of  many  different  parameters  (i.e.,  characteristics),  which  are 

 contingent  on  many  factors,  both  conscious  and  automatic.  Fundamental  frequency, 

 Harmonics-to-Noise  Ratio,  and  Jitter  are  such  speech  parameters  that  have  been  found  to 

 change  in  stressed  subjects  (Giddens  et  al.,  2013;  Kreiman  &  Sidtis,  2011;  Mendoza  & 
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 Carballo,  1998;  Orlikoff,  1990;  Orlikoff  &  Baken,  1989).  Based  on  the  available  literature,  1) 

 Fundamental  frequency  (F0)  can  be  considered  a  key  speech  parameter  in  the  context  of 

 different  types  of  stressors.  F0  refers  to  the  frequency  at  which  the  vocal  cords  vibrate,  and 

 gives  rise  to  the  idea  of  the  pitch  of  the  voice.  Research  suggests  a  universal  trend  of  increase 

 in  F0  in  stressed  subjects  (Giddens  et  al.,  2010,  2013;  Godin  &  Hansen,  2008;  Johannes  et  al., 

 2007;  Koblick,  2004;  Kreiman  &  Sidtis,  2011;  Mendoza  &  Carballo,  1998;  Rothkrantz  et  al., 

 2004;  Williams  &  Stevens,  1972).  Another  widely  used  speech  parameter  is  2) 

 Harmonics-to-Noise  Ratio  (HNR),  which  indicates  one’s  vocal  quality  by  measuring  the  additive 

 noise  in  the  speech  signal  during  voiced  periods  (e.g.,  when  uttering  vowels).  HNR  has  mainly 

 been  studied  in  physical  stress  tasks  (e.g.,  workout),  and  has  shown  to  decrease  with 

 increased  physical  task  stress  (Godin  et  al.,  2012;  Godin  &  Hansen,  2015;  Koblick,  2004),  but 

 has  shown  mixed  results  in  the  context  of  cognitive  load/psychological  stress  (e.g.,  tongue 

 twister,  reciting  the  alphabet  backwards;  Mendoza  &  Carballo,  1998).  3)  Jitter  refers  to  the 

 frequency  variation  from  cycle  to  cycle  and  has  been  found  to  reduce  in  the  context  of  stress, 

 however  this  trend  has  not  shown  to  be  universal  (Giddens  et  al.,  2013;  Mendoza  &  Carballo, 

 1998).  Moreover,  4)  formants  have  been  opted  as  promising  features  of  speech  in 

 distinguishing  stress  from  speech,  more  specifically,  the  shifting  of  formant  1  (F1)  and  formant 

 2  (F2)  have  shown  to  be  decent  indicators  of  psychological  stress  (Sigmund,  2012;  Van 

 Puyvelde  et  al.,  2018).  Formants  are  the  primary  resonances  of  the  vocal  tract  and  can  shift  due 

 to  numerous  conscious  and  unconscious  processes  and  are  dependent  on  one's  speech  style 

 (Shahin  &  Botros,  2001).  There  has,  however,  not  been  consensus  on  the  effects  of 

 psychological  stress  on  F1  and  F2,  which  indicates  it  to  be  heavily  influenced  by  individual 

 trends  rather  than  global  trends  valid  for  all  speakers  (Kirchhuebel,  2010;  Sigmund,  2012). 
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 Since  both  change  in  F1  and  F2  play  a  role  in  stress,  a  ratio  score  could  be  computed  that  is 

 reactive  to  changes  in  either  formant;  Formant  1:2  Ratio.  Lastly,  it  has  been  suggested  that 

 with  increased  physical  stress,  breathing  patterns  and  muscle  tension  impact  different  aspects 

 of  speech,  such  as  inappropriate  pause  placements  (Van  Puyvelde  et  al.,  2018).  As  a  final 

 feature,  5)  Mean  Voiced  Segment  Length  can  be  used  to  gain  insight  into  such  speaking 

 patterns  as  it  is  the  mean  length  of  the  continuously  voiced  regions  which  is  expected  to 

 decrease under stress. 

 Even  though  research  is  currently  lacking,  the  combination  of  these  speech  parameters 

 is  highly  promising  for  the  detection  and  understanding  of  increased  stress.  However,  it  should 

 be  noted  that  each  of  these  parameters  reflect  unique  features  of  a  complex  speech  production 

 process.  Therefore,  these  parameters  are  highly  interrelated,  where  the  unique  interplay 

 between  each  of  these  measures  remains  to  be  modeled.  In  particular,  little  is  known  regarding 

 the  complex  interplay  between  speech  parameters  and  how  it  is  affected  by  stress  (Giddens  et 

 al.,  2013;  Kreiman  &  Sidtis,  2011).  Much  of  the  recent  work  in  stress  detection  from  speech  has 

 been  conducted  in  controlled,  quiet  lab  settings  or  with  vocal  actors  acting  out  a  stressful 

 monologue  rather  than  truly  experiencing  psychological  stress  (Giddens  et  al.,  2013),  limiting 

 the  ecological  validity  of  previous  findings.  Moreover,  it  has  been  suggested  that  the  effect  of 

 stress  on  the  formants,  which  are  shifted  as  a  consequence,  and  Jitter  is  heavily  influenced  by 

 individual  differences  in  stress  reactivity  (Giddens  et  al.,  2013;  Scherer,  1986).  This  is  likely  to 

 also  be  the  case  for  other  speech  parameters  and  could  explain  the  mixed  results  observed  in 

 the  literature.  Considering  the  variety  of  environments,  microphones  with  different  qualities,  and 

 interindividual  differences  in  stress  expression  in  speech,  a  number  of  researchers  have 
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 expressed  the  need  for  high-quality  studies,  using  real  participants  rather  than  voice  actors,  to 

 compose  large  datasets  of  speech  data  with  high-quality  stress  labels  and  recorded  in  a  variety 

 of  contexts  (Giddens  et  al.,  2013;  Slavich  et  al.,  2019).  Moreover,  many  researchers 

 investigated  stressful  versus  non-stressful  events  in  their  experimental  designs  without 

 verifying  whether  participants  truly  experienced  stress  by  using  physiological  markers  or 

 inquiries.  Lastly,  previous  research  has  primarily  focused  on  how  the  entirety  of  indicators  is 

 associated  with  stress,  without  highlighting  the  complex  dynamics  amongst  the  indicators  and 

 how each of the speech features are uniquely related to stress. 

 The  current  study  uses  a  design  that  takes  the  above-mentioned  shortcomings  into 

 consideration  to  establish  a  common  ground  from  which  new  insights  can  be  developed. 

 Healthy  individuals  will  be  instructed  to  read  out  loud  standardized  texts  both  prior  to  and  after 

 exposure  to  a  highly  controlled  psychosocial  stressor.  Psychosocial  stressors  are  often 

 described  as  one  of  the  most  powerful  and  ecologically  valid  stressors  (Kirschbaum  & 

 Hellhammer,  1994).  Psychosocial  stress  is  induced  in  situations  of  social  evaluation,  social 

 exclusion,  and  other  situations  in  which  social  threat  occurs  (Dickerson  &  Kemeny,  2004).  The 

 need  to  be  associated  with  others  and  to  maintain  a  social-self  are  core  psychological  needs 

 (Panksepp,  2003;  Tossani,  2013).  When  one  of  these  needs  is  threatened,  for  example  when 

 being  negatively  compared  to  others,  social  threat  and  thus  stress  is  induced  (Dickerson  & 

 Kemeny,  2004).  Social  evaluation  induces  an  increased  stress  response  which  is  expressed  in 

 increased  electrodermal  activity  (i.e.,  skin  conductance),  subjective  (experienced)  stress,  and 

 negative affect (Dedovic et al., 2009; Dickerson & Kemeny, 2004). 
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 Given  that  our  literature  review  demonstrates  mixed  effects  for  parameters  derived  from 

 stressed  speech  (and  thus  a  lack  of  clarity  in  their  relations  and  direction),  and  that  the 

 interrelation  between  each  of  these  constructs  in  the  context  of  stress  (i.e.,  speech  parameters, 

 skin  conductance  levels,  and  self-reported  mood)  remains  to  be  explored,  we  will  make  use  of 

 psychological  network  models  (Borsboom  &  Cramer,  2013;  Newman,  2010).  Network 

 methodology  is  an  increasingly  used  technique  to  gain  insight  into  complex  relationships  in  a 

 data-driven  manner,  allowing  mapping  how  each  of  the  constructs  of  interest  is  uniquely 

 related  to  one  another.  As  such,  network  models  are  well-suited  to  explore  whether  and  how 

 the  complex  interplay  between  each  of  the  above-presented  core  speech  parameters  is 

 impacted  by  stress.  In  addition,  network  analysis  allows  us  to  map  how  changes  in  speech  due 

 to  experimental  manipulation  of  stress  relate  to  changes  in  negative  affect.  This  study  has  two 

 main  aims:  1)  We  aim  to  model  the  impact  of  a  psychosocial  stressor  (the  Montreal  Imaging 

 Stress  Task  (MIST);  Dedovic  et  al.,  2005)  on  the  unique  associations  between  the  speech 

 parameters  of  interest  (Fundamental  frequency,  Jitter,  Harmonics-to-Noise  Ratio,  Formant  1:2 

 Ratio,  and  Mean  Voiced  Segment  Length)  before  and  after  the  stressor  (aim  1);  2)  we  will  model 

 how  stress  induced  change  in  the  speech  parameters  relates  to  change  in  the  negative  affect 

 ratings  (measured  with  VAS)  as  these  analyses  will  shed  light  on  the  unique  associations 

 between  the  change  in  speech  features  and  negative  affect  following  a  psychosocial  stressor 

 (aim  2).  Given  the  exploratory  data-driven  approach  and  undirected  nature  of  the  models,  the 

 obtained  network  models  are  likely  to  allow  further  hypothesis  generation,  which  will  be 

 informative for future confirmatory studies. 
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 2.3. Methods 

 A  convenience  sample  of  148  students  (  M  age  =  26.7,  SD  age  =  12.5,  51  women,  97 

 men)  was  recruited  through  flyers,  social  media,  and  University  of  Ghent  mailing  lists  informing 

 them  on  the  duration  of  the  experiment,  the  possibility  to  win  a  25  euro  gift  card,  and  a  link  to 

 www.vopexperiment.be  where  participants  could  plan  their  session  through  a  youcanbookme 

 synchronization.  The  study  was  conducted  in  accordance  with  the  ethical  guidelines  of  the 

 Faculty  of  Psychology  and  Educational  Sciences  of  Ghent  University,  and  all  participants  gave 

 written consent before participating. 

 2.3.1. Apparatus and Procedure 

 Participants  were  seated  in  one  of  two  nearly  identical  rooms  in  front  of  a  Huawei 

 MediaPad  M5  tablet.  The  task  was  written  in  Java  using  Android  Studio.  Before  any 

 instructions  commenced,  participants  signed  the  informed  consent  form.  Then,  participants 

 were  instructed  on  the  procedure,  how  the  tablet  and  application  worked  (how  to  record,  etc.), 

 and  the  cover  story  (cf.  infra)  was  repeated  to  minimize  the  likelihood  of  the  actual  purpose  of 

 the  study  being  identified.  Next,  participants  were  given  a  smartwatch  (Chill+  Band)  to  put  on 

 their  dominant  hand  from  which  Electrodermal  Activity  was  measured  (EDA).  In  addition,  2  ECG 

 electrodes  were  placed  on  the  sternum  and  chest.  The  participants  were  informed  on  the 

 purpose  of  each  of  these  measures  with  the  cover  story  of  it  being  used  to  validate  the 

 smartwatch  measures.  Data  quality  was  inspected  shortly  before  the  actual  experiment  started. 

 Firstly,  participants  were  requested  to  rate  the  VAS  (pre-baseline,  exclusively  to  familirize 
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 participants  and  is  not  used  in  analysis).  Next,  participants  were  instructed  to  rest  for  5  minutes 

 to  ensure  they  were  relaxed  and  minimize  the  impact  of  any  events  occurring  before  the 

 experiments  (e.g.,  rushing  or  nervousness).  Following  the  resting  phase,  participants  were 

 instructed  to  read-out-loud  a  5-sentence  piece  of  text  that  was  the  same  for  all  participants 

 and an often-used text in Dutch speech therapy: 

 “Papa  en  Marloes  staan  op  het  station.  Ze  wachten  op  de  trein.  Eerst  hebben  ze  een  kaartje 

 gekocht.  Er  stond  een  hele  lange  rij,  dus  dat  duurde  wel  even.  Nu  wachten  ze  tot  de  trein  eraan 

 komt.  Het  is  al  vijf  over  drie,  dus  het  duurt  nog  vier  minuten.  Er  staan  nog  veel  meer  mensen  te 

 wachten.  Marloes  kijkt  naar  links,  in  de  verte  ziet  ze  de  trein  al  aankomen.”  From:  van  de  Weijer 

 and Slis (1991) 

 Participants  were  instructed  that  the  recording  of  the  speech  was  to  train 

 speech-to-text  algorithms  to  hide  the  actual  purpose  but  to  ensure  the  accurate  pronunciation 

 of  the  text.  Next,  once  again  the  VAS  sliding  scales  were  answered,  providing  a  baseline 

 measure  for  NA  in  a  relatively  unstressed  state  (i.e.,  following  the  first  resting  block).  After  that, 

 the  MIST  (see  Stress  induction  procedure  header)  commenced,  starting  with  instructions  and  2 

 minutes  of  practice  trials  during  which  no  social  comparison  was  made  and  without  a  trial  time 

 limit.  After  the  testing  phase  of  the  MIST,  another  speech  recording  and  VAS  segment  was 

 conducted,  which  corresponds  to  the  post-stress  measurement.  The  end  phase  of  the 

 experiment  consisted  of  another  5-minute  resting  block,  to  prevent  participants  from  leaving 

 the  experiment  in  a  stressed  state,  followed  by  another  block  of  VAS  questions.  The 

 experiment  was  concluded  by  conducting  the  Ruminative  Response  Scale  (RRS)  and  the 

 Depression,  Anxiety,  and  Stress  Scale  (DASS)  in  order  to  get  an  estimation  of  the  sample 
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 characteristics.  At  the  end  the  participants  were  debriefed  and  informed  on  the  actual  purpose 

 of  the  study.  Figure  1  shows  a  visual  representation  of  the  study  procedure,  exclusively 

 containing the elements relevant for the current manuscript. 

 Figure 1 
 Visual representation of the study procedure 

 2.3.2. Stress induction procedure 

 In  order  to  induce  acute  stress  in  our  participants  and  investigate  the  effects  of  stress 

 on  networks  of  speech  parameters,  we  used  the  Montreal  Imaging  Stress  Task  (MIST;  Dedovic 

 et  al.,  2005).  This  is  a  sequence  of  arithmetic  questions  designed  as  a  stress  induction  task.  To 

 ensure  a  proper  understanding  of  the  task,  participants  could  practice  for  2  minutes.  Trials 

 consisted  of  mathematical  tasks  where  the  correct  answer  was  situated  between  0  and  9. 

 Participants  were  instructed  to  answer  these  trials  as  quickly  as  possible  using  arrow  buttons 

 to  select  the  right  answer  on  a  number  wheel.  After  the  practice  block,  the  actual  task  started 

 and  was  performed  for  5  minutes.  During  this  task,  participants  were  shown  a  time  limit  per 

 trial,  which  was  set  at  90%  of  their  average  time  during  the  practice  block.  In  addition,  time 

 limits  were  reduced  by  another  10%  when  they  answered  three  consecutive  trials  correctly. 

 Throughout  the  task,  participants  were  presented  a  performance  indicator  showing  their 

 performance  as  compared  to  the  ‘average  participant’  ,  which  in  reality  was  an  unfeasible, 

 fictional  benchmark.  Participants  were  instructed  that  they  should  not  deviate  from  the  average 
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 performance  too  much,  and  that  if  they  would  the  data  would  be  unusable  for  the  purpose  of 

 the  study.  Throughout  the  task,  the  experimenter  was  sitting  across  from  the  participant  and 

 taking  notes.  Since  the  participant  is  always  performing  worse  than  the  ‘average  participant’  , 

 and  with  the  experimenter  taking  notes  and  the  constant  time  pressure,  stress  is  induced.  As  a 

 cover  story,  participants  were  told  that  the  study  attempts  to  link  biometric  signals  to  quick 

 arithmetic solving skills. 

 2.3.2.1. Trial 

 Trials  showed  a  numbered  wheel  from  0  -  9  on  which  the  participant  could  select  the 

 desired  answer  using  arrow  buttons  and  confirm  when  ready.  Above  the  numbered  wheel,  an 

 arithmetic  task  was  presented.  The  top  of  the  screen  showed  a  red  bar  which  was  slowly 

 disappearing,  indicating  the  time  left  for  that  specific  trial.  Another  bar  was  shown  representing 

 how  well  the  participant  was  performing  compared  to  others,  which  was  always  negative.  After 

 answering,  participants  were  either  shown  a  green  overlay  saying  correct  or  a  red  overlay 

 saying  incorrect  .  If  they  ran  out  of  time,  a  red  overlay  saying  timeout  was  presented.  The 

 practice  trials,  which  were  offered  at  the  beginning  of  the  task,  did  not  have  a  time  limit  and  did 

 not  show  a  comparison  to  other  participants.  These  were  used  to  familiarize  the  participant 

 with  the  task  as  well  as  getting  a  reference  reaction  time  to  calculate  the  trial  time  limits  in  the 

 experimental phase. See supplemental material for screenshots. 
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 2.3.3. Self-report measurement – Negative Affect; NA 

 To  evaluate  negative  affect  (NA),  as  an  indicator  of  stress,  self-reported  mood  was 

 measured  at  4  time  points  (baseline  [T1],  pre-stress  [T2],  post-stress  [T3],  post-recovery  [T4]), 

 by  using  the  3  NA  items  of  a  7  item  mood  questionnaire  (adopted  from  the  Profile  of  Mood 

 States  (POMS);  Rossi  &  Pourtois,  2012)  presented  on  a  sliding  scale  from  0-100  on  different 

 states  (angry,  tense,  dejected).  The  answers  to  these  VAS  are  used  as  a  manipulation  check  for 

 the  stress  induction  procedure.  More  specifically,  we  used  the  items  representing  negative 

 affect  (angry,  tense,  dejected)  allowing  a  compound  score  for  NA  (ranging  from  0  –  100)  where 

 high scores reflect being in a more negative mood state. 

 2.3.4. Extraction of speech parameters 

 Speech  parameters  were  extracted  using  OpenSmile  2.3.0  (Eyben  et  al.,  2010)  and  the 

 GeMAPS  configuration  (Eyben  et  al.,  2015),  a  parameter  set  used  in  voice  research  and 

 affective  computing.  Fundamental  frequency  is  the  central  tendency  of  the  frequency  of 

 vibration  of  the  vocal  folds  during  speech,  and  as  such,  is  closely  related  to  pitch,  which  is 

 defined  as  our  perception  of  Fundamental  frequency.  Jitter  is  the  deviation  in  the  F0  computed 

 across  consecutive  time  segments.  Formant  1:2  Ratio  is  the  ratio  of  the  energy  of  the  first 

 formant  (F1)  to  the  energy  of  the  second  formant  (F2).  Harmonics-to-Noise  Ratio  (HNR)  is  the 

 relation  of  energy  in  harmonic  components  to  energy  in  noise-like  components,  and  lastly, 

 Mean  Voiced  Segment  Length  is  the  average  length  of  continuously  voiced  regions  (F0  >  0), 

 thus  sounds  made  while  the  vocal  cords  vibrate.  For  more  detailed  information  on  parameter 
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 calculation  and  extraction  procedure,  we  refer  the  reader  to  Eyben  et  al.  (2010)  and  Eyben  et 

 al. (2015) and the Supplemental Material. 

 2.3.5. Statistical Analyses 

 The  network  analyses  were  conducted  in  R  (for  detailed  version  information  of  the 

 statistical  software  and  packages  used,  see  supplemental  materials).  As  part  of  the 

 manipulation  check,  we  fitted  generalized  linear  mixed  models  (GLMMs)  using  the  ‘lme4’  (Bates 

 et  al.,  2014)  and  ‘car’  (Bates  et  al.,  2014;  Fox  et  al.,  2012)  packages.  The  sum  of  squares  for  the 

 models  was  estimated  using  the  type  III  approach,  and  the  statistical  significance  level  was  set 

 to  p  <  .05.  Follow-up  tests  with  pairwise  comparisons  of  the  estimated  marginal  means  (EMMs) 

 were performed with the ‘emmeans’ R Package (Lenth, 2018). 

 We  relied  on  Gaussian  Graphical  Models  (GGMs),  also  referred  to  as  regularized  partial 

 correlation  networks,  to  model  the  impact  of  stress  on  the  unique  associations  between  the 

 speech  parameters  of  interest  (Fundamental  frequency,  Jitter,  Harmonics-to-Noise  Ratio, 

 Formant  1:2  Ratio,  and  Mean  Voiced  Segment  Length),  as  well  as  the  relation  between  change 

 in  speech  parameters  and  change  in  NA  throughout  the  stress  induction  procedure.  For  this 

 purpose,  we  estimated  three  separate  GGMs.  In  particular,  we  computed:  (1)  a  network 

 including  each  of  the  speech  parameters  of  interest,  assessed  following  a  resting  phase 

 (referred  to  as  resting  state  network  ),  (2)  a  network  including  the  speech  parameters,  assessed 

 immediately  following  the  stress  induction  procedure  (referred  to  as  stress  network  ),  and  (3)  a 

 network  including  the  change  scores  for  each  of  the  speech  parameters  and  the  compound 

 measure  for  NA  (referred  to  as  stress  reactivity  network  ).  Change  in  NA  /  speech  parameters 
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 was  computed  by  subtracting  the  resting  state  measure  from  the  post-stressor  measure.  As 

 such,  a  positive  value  reflects  an  increase  in  NA  /  the  speech  parameters  throughout  the 

 induction procedure. 

 2.3.6. Data preparation and network estimation. 

 To  improve  normality,  all  variables  underwent  nonparanormal  transformation  using  the 

 huge  package  (Zhao  et  al.,  2012),  after  which  the  GGMs  were  estimated  using  the  qgraph 

 package  (Epskamp  et  al.,  2012).  As  the  name  suggests,  GGMs  or  regularized  partial  correlation 

 networks  depict  the  unique  associations  (partial  correlations)  between  each  of  the  variables 

 (referred  to  as  “nodes”)  included  in  the  analyses.  In  network  models,  the  unique  associations 

 between  each  of  the  nodes  are  referred  to  as  “edges“.  However,  given  that  absence  of  an 

 association  between  two  constructs  does  not  always  result  in  a  correlation  coefficient  of 

 exactly  zero,  the  need  arises  for  a  phase  of  regularization  to  prevent  the  inclusion  of  spurious 

 associations.  For  this  purpose,  we  relied  on  the  Graphical  Least  Absolute  Shrinkage  and 

 Selection  Operator  (gLASSO;  Friedman  et  al.,  2014),  which  shrinks  small  associations,  likely 

 reflecting  spurious  /  false-positive  findings,  to  zero  (similar  to  multiple  comparison  corrections, 

 for  more  information  see  Friedman  et  al.,  2014  and  Epskamp  &  Fried,  2018  for  a  tutorial  on 

 GGMs  including  this  regularization  technique)  .  The  model  with  the  best  fit  was  then  selected 

 using  the  Extended  Bayesian  Information  Criterion  with  hyperparameter  γ  =  0.5.  This 

 hyperparameter  setting  errs  on  the  side  of  parsimony,  maximizing  model  specificity  (Epskamp 

 &  Fried,  2018).  As  a  result,  the  obtained  network  model  is  less  likely  to  include  false-positive 

 associations  (for  a  more  detailed  discussion  of  estimation  of  GGMs  ,  including  an  extensive 
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 tutorial  ,  see  Epskamp  &  Fried,  2018).  To  examine  which  nodes  take  a  more  central  role  in  the 

 model,  we  estimated  node  Strength  centrality.  Strength  centrality  is  calculated  as  the  sum  of 

 absolute  edge  weights  connected  to  each  node  in  the  model  (Costantini  et  al.,  2015).  As  such, 

 high  scores  on  Strength  centrality  reflect  that  the  node  is  more  strongly  connected.  Finally,  we 

 used  a  node-wise  regression  approach  to  estimate  node  predictability,  the  proportion  of 

 variance  of  each  node  that  is  explained  by  its  neighboring  nodes  (Haslbeck  &  Fried,  2017).  For 

 this purpose, we relied on the  mgm  package (Haslbeck  & Waldorp, 2020). 

 2.3.7. Network visualization. 

 The  network  models  were  plotted  with  qgraph  ,  using  a  modification  of  the 

 Fruchterman-Reingold’s  algorithm  (Fruchterman  &  Reingold,  1991).  This  algorithm  aims  to 

 position  nodes  in  the  network  based  on  their  level  of  connectivity  (but  see  Jones  et  al.,  2018). 

 Unique  associations  between  nodes  are  represented  by  edges.  The  thickness  of  each  of  the 

 edges  reflects  the  strength  of  the  association,  whereas  the  color  and  type  of  line  (full/dashed) 

 reflects  the  valence  of  the  edge  (blue/full:  positive  association;  red/dashed:  negative 

 association).  The  GGMs  are  undirected  and  as  such  allow  no  interpretation  regarding  the 

 direction  of  effects.  To  facilitate  visual  comparison  between  the  resting  state  and  stress 

 network,  the  layout  of  these  two  networks  was  constrained  to  be  identical  (using  the  average 

 layout  of  both  models).  In  addition,  for  these  two  networks,  we  plotted  the  thickness  of  each  of 

 the  edges  relative  to  the  strongest  edge  observed  over  both  models.  Moreover,  for  each  of  the 

 nodes,  we  present  the  proportion  of  explained  variance  by  the  neighboring  nodes  as  a  pie 
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 chart  in  the  outer  ring  of  the  node  (node  predictability).  Strength  centrality  was  standardized  to 

 facilitate interpretation. 

 2.3.8. Network comparison. 

 To  compare  the  resting  state  network  and  stress  network,  we  first  correlated  the  two 

 obtained  adjacency  matrices.  Similarly,  we  examined  how  the  estimates  of  Strength  centrality 

 obtained  for  each  of  the  network  models  correlated,  as  well  as  node  predictability.  We  then 

 proceeded  with  permutation  tests  for  network  structure  invariance,  allowing  to  test  whether  the 

 network  structures  significantly  differed,  and  global  strength  invariance,  testing  potential 

 differences  between  the  resting  state-  and  stress  network  in  (overall)  strength  of  connectivity 

 (van  Borkulo  et  al.,  2017).  For  this  purpose,  we  relied  on  the  NetworkComparisonTest  package 

 (for dependent samples; van Borkulo et al., 2016). 

 2.3.9. Evaluation of the stability and accuracy of the models. 

 To  evaluate  the  stability  and  accuracy  of  each  of  the  obtained  network  models,  we 

 followed  bootstrapping  procedures  set-out  by  Epskamp,  Borsboom,  and  Fried  (2018).  In 

 particular,  using  the  bootnet  package  (Epskamp  &  Fried,  2015)  we  modeled  sampling  variability 

 in  edge  weights  (edge  accuracy)  and  plotted  significant  differences  in  edge  weights. 

 Furthermore,  we  evaluated  the  stability  of  the  indicator  of  node  centrality,  modeling  the  extent 

 to  which  the  order  of  Strength  centrality  remained  stable  in  subsets  of  the  data  (cf. 

 case-dropping  subset  bootstrap).  To  be  considered  stable,  the  corresponding  correlation 

 stability coefficient should be ≥ .25 (Epskamp et al., 2018). 
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 2.4. Results 

 Due  to  technical  malfunctions,  all  ECG  data  was  unusable  and  a  part  of  the  EDA  has 

 not  been  collected  properly  for  some  participants  throughout  the  experiment  (n=32).  Therefore, 

 the  EDA  data  (together  with  self-reported  mood  data)  that  was  collected  accurately  is  used  to 

 validate the stress induction method, but will not be included in the network analyses (n=148). 

 2.4.1. Manipulation Check 

 Before  the  main  analysis,  a  manipulation  check  was  conducted  to  verify  whether  the 

 stress  induction  was  successful  by  comparing  both  negative  affect  (NA)  pre-  and  post-stress 

 induction,  and  EDA  pre-,  during-,  and  post-stress  induction.  Given  the  non-normality  of  the 

 EDA  data,  a  series  of  (G)LMM  (Generalized  linear  mixed  models)  were  conducted  to  ensure  the 

 use  of  a  statistical  model  that  best  fits  the  underlying  distribution  (e.g.,  normal,  gamma).  Based 

 on  the  Akaike  Information  Criterion  (AIC),  EDA  was  best  described  by  a  gamma  model  with  a 

 log-link (AIC = 802.5). 

 Corresponding  models  were  fit  with  only  time  (pre  -  post  for  negative  affect  (2  levels) 

 and  pre  -  during  -  post  for  EDA  (3  levels))  as  an  independent  variable  and  subject  ID  as  random 

 intercept.  The  LMM  for  negative  affect  showed  a  significant  effect  of  time  (see  Figure  2a),  p  < 

 .001  with  post-stress  scores  showing  significantly  more  negative  affect  than  pre-stress,  b  = 

 6.45,  SE  =  .877,  t  =  -7.35,  p  <  .001.  Moreover,  the  GLMM  for  EDA  also  showed  a  significant 

 effect  of  time  (see  Figure  2b),  χ²  =  247.59  ,  p  <  .001,  with  EDA  increasing  during  the  task  versus 

 prior  to  the  task,  b  =  .621,  SE  =  .029,  z  =  -10.29,  p  <  .001,  EDA  after  the  task  being  higher  than 
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 during  the  task  b  =  .776  ,  SE  =  .035,  z  =  -5.53,  p  <  .001  and  EDA  after  the  task  being  higher 

 than prior to the task,  b =  .482,  SE =  .023,  z =  -15.513,  p <  .001. 

 To  further  underline  the  stress  induction  effectiveness,  we  ran  a  Pearson  correlation 

 between  the  delta  scores  computed  for  EDA  and  negative  affect.  The  delta  scores  were 

 computed  by  subtracting  the  data  from  the  resting  state  measure  from  the  post-stressor 

 measure  for  these  variables,  resulting  in  scores  that  indicate  an  increase  after  the  stress 

 induction  when  positive,  and  a  decrease  when  negative.  A  significant  correlation,  r  (114)  =  .19,  p 

 =  .04,  was  found  following  the  expected  trend  of  negative  interrelatedness,  therefore 

 supporting the stress-induction method. 

 Figure 2 

 a; left) Negative Affect Pre- and Post-Stress Induction. b; right) EDA Pre-, During, and Post-Stress Induction 
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 2.4.2.  Impact  of  Stress  on  the  Interrelations  Between 

 Speech Parameters (aim 1) 

 Our  first  aim  was  to  model  the  impact  of  stress  on  the  interrelations  between  the  speech 

 parameters  of  interest  by  comparing  a  pre-stressor  network  with  a  post-stressor  network. 

 These  networks  consist  of  nodes  representing  variables,  connected  by  edges  representing 

 regularized  partial  correlations.  As  such,  every  edge  (connection)  between  two  nodes 

 (variables)  represents  the  sign  (positive/negative)  and  the  weight  (strength)  of  the  connection, 

 depicting  the  unique  associations  between  two  nodes  while  controlling  for  all  other  nodes  in 

 the  network  (Epskamp  et  al.,  2018).  Figure  3a  presents  the  unique  associations  between 

 Fundamental  frequency  (F0),  Jitter  (JIT),  Harmonics-to-Noise  Ratio  (HNR),  Formant  1:2  Ratio 

 (F1/2),  and  Mean  Voiced  Segment  Length  (VO)  at  rest  (n=148).  The  strongest  connection  in  the 

 network  occurs  between  HNR  and  F0  (.75).  HNR  is  positively  associated  with  F0  and  VO.  The 

 latter  two  constructs  are  negatively  associated  with  one  another.  In  addition,  VO  and  HNR  are 

 negatively  associated  with  JIT.  For  HNR,  an  additional  negative  edge  emerges  with  F1/2. 

 Finally, we observe a negative association between JIT and F1/2. 
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 Figure 3 
 Unique Associations Between the Voice Parameters pre- (a; Left) and Post-Stressor (b; Right) 

 Note.  Edges  in  the  models  represent  the  unique  associations  between  each  of  the  nodes.  Edge 
 thickness  reflects  the  strength  of  association,  where  strong  associations  are  presented  using  thicker 
 edges.  Blue  /  Full  edges  represent  positive  associations,  whereas  red  /  dashed  edges  represent  negative 
 associations;  the  edge  weights  presented  in  the  model  can  also  be  found  in  the  edge  weight  matrix 
 (Supplemental  tables  6  &  7).  Node  predictability  (R  2  )  is  visualized  as  a  pie  chart  around  each  node  and 
 can also be found in supplementary table 1. 

 The  pattern  of  unique  interrelations  between  the  speech  parameters  of  interest  does  not 

 seem  to  be  affected  by  the  stress  induction  procedure.  That  is,  the  network  model  obtained 

 based  on  the  speech  fragments  that  were  collected  immediately  following  the  stressor  (Figure 

 2b,  n=148),  is  highly  similar  to  the  resting  state  network  (Figure  3a).  This  is  also  reflected  by  the 

 indicator  of  node  centrality  (Figure  4),  which  quantifies  how  well  a  node  is  directly  connected  to 

 other  nodes  by  adding  up  the  strength  of  all  connected  edges  to  a  node  (Epskamp  et  al., 

 2018).  In  particular,  in  terms  of  node  Strength,  HNR  is  the  most  central  node  in  each  of  the 

 networks,  followed  by  F0,  VO,  and  JIT.  F1/2  is  the  least  connected  node  in  the  model.  This  is 

 also  reflected  by  the  amount  of  explained  variance  for  each  of  the  nodes  (i.e.,  node 
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 predictability).  In  particular,  node  predictability  of  HNR  was  .85  and  .83  in  the  resting  state  and 

 stress  network  respectively,  whereas  only  24%  and  31%  of  the  variance  in  F1/2  was  explained 

 by  the  neighboring  nodes  in  the  resting  state  and  stress  network  respectively  (see  table  1  for 

 estimates  of  node  predictability  and  supplemental  material  for,  edge  accuracy,  edge 

 differences, and centrality stability). 

 Table 1 
 Node  predictability  for  Pre-Stressor  network  (aim  1),  Post-Stressor  network  (aim  1),  and  Change 
 Network (aim 2) 

 Node  R  2  Pre-Stressor 
 network 

 R  2  Post-Stressor 
 network 

 Change Network 

 F0  .78  .72  .16 

 HNR  .85  .83  .37 

 JIT  .41  .42  .35 

 VO  .40  .44  .19 

 F1/2  .24  .31  .12 

 NA  .02 

 Note.  R  2  is  explained  variance.  F0  is  Fundamental  Frequency.  HNR  is  Harmonics-to-Noise  Ratio.  JIT  is 
 jitter. VO is Mean Voiced Segment Length. F ½ is Formant 1:2 Ratio. NA is Negative Affect. 
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 Figure 4 
 Strength Centrality 

 In  line  with  the  visual  interpretation  of  the  obtained  network  models,  a  statistical 

 comparison  of  the  models  suggested  strong  overlap.  That  is,  we  observed  a  correlation  of  r  = 

 .99  between  the  adjacency  matrices  of  both  networks.  Similarly,  centrality  Strength  and  node 

 predictability  for  the  resting  state  and  post  stressor  networks  each  reached  r  =  .99.  Indeed,  the 

 Network  Comparison  Test  suggested  no  significant  differences  in  terms  of  overall  network 

 structure  (  M  =  0.06,  p  =  .93;  network  invariance  test)  or  strength  of  connectivity  (resting  state 

 network  =  2.33;  post  stressor  network  =  2.44;  S  =  0.11,  p  =  .57;  global  strength  invariance 

 test). 
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 2.4.3.  Modeling  the  Unique  Associations  Between  Stress 

 Reactivity and Change in Speech Parameters (aim 2) 

 Figure  5  (n=148)  depicts  the  unique  associations  between  change  in  negative  affect 

 (NA)  and  change  in  the  speech  parameters  following  the  stress  induction  procedure  with  every 

 edge  (connection)  between  two  nodes  (variables)  represents  the  sign  (positive/negative)  and 

 the  weight  (strength)  of  the  connection,  depicting  the  unique  associations  between  the  two 

 nodes  while  controlling  for  all  other  nodes  in  the  network  (Epskamp  et  al.,  2018).  Interestingly, 

 change  in  JIT  was  the  only  speech  parameter  that  was  directly  connected  to  change  in  NA.  In 

 particular,  the  experience  of  more  negative  affect  throughout  the  stress  induction  procedure 

 was  directly  related  to  increased  JIT.  All  other  speech  parameters  were  only  indirectly 

 connected  to  change  in  NA  through  JIT.  Change  in  JIT  was  negatively  related  to  change  in  HNR 

 and  F0,  and  VO,  which  suggests  that  increases  in  JIT  due  to  the  stress  induction  procedure 

 were  related  to  decreases  in  HNR,  F0  and  VO.  In  addition,  we  observed  positive  associations 

 between  HNR  and  VO  /  F0,  and  F0  and  F1/2.  Finally  we  observed  negative  associations 

 between  F1/2  and  VO  /  HNR.  Based  on  node  Strength,  change  in  HNR  and  Jitter  emerged  as 

 the  most  central  nodes  in  the  network,  whereas  change  in  NA  was  the  least  central  node  (see 

 supplemental  material  for  estimates  of  node  predictability,  edge  accuracy,  edge  differences, 

 and centrality stability). 
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 Figure 5 

 Unique Associations Between Change in Negative Affect and Speech Parameters. 

 Note.  Edges  in  the  model  represent  the  unique  associations  between  each  of  the  nodes.  Edge 
 thickness  reflects  the  strength  of  association,  where  strong  associations  are  presented  using  thicker 
 edges.  Blue  /  Full  edges  represent  positive  associations,  whereas  red  /  dashed  edges  represent  negative 
 associations;  the  edge  weights  presented  in  the  model  can  also  be  found  in  the  edge  weight  matrix 
 (Supplemental  table  8).  Node  predictability  (R  2  )  is  visualized  as  a  pie  chart  around  each  node  and  can 
 also be found in table 1. 
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 2.5. Discussion 

 The  two  aims  of  the  present  study  were  to  gain  insight  into  (1)  the  unique  associations 

 between  specific  speech  parameters  (Fundamental  frequency,  Jitter,  Harmonics-to-Noise 

 Ratio,  Voiced  Segment  Length,  and  Formant  1:2  Ratio)  after  as  compared  to  before 

 experiencing  psychosocial  stress,  and  (2)  how  change  in  these  speech  parameters  was 

 uniquely  associated  with  change  in  self-reported  NA  following  the  stressor.  We  measured 

 (change  in)  speech  in  the  context  of  experimentally  induced  stress  in  a  large  sample  of 

 individuals  selected  from  the  community.  The  psychosocial  stress  induction  was  successful,  as 

 evidenced  by  higher  skin  conductance  levels  after  the  stress  induction  as  compared  to 

 baseline,  as  well  as  increased  negative  affect  following  the  stress  induction.  Moreover,  we 

 observed  a  significant  positive  association  between  these  measures,  indicating  that  the  more 

 skin  conductance  levels  were  increased  following  the  psychosocial  stress  induction,  the  more 

 negative  mood  was  reported,  providing  support  for  the  validity  of  the  stress-induction  method. 

 As  such,  the  comparison  between  the  resting  state  and  stress  network  allows  us  to  test  for 

 changes in interrelations between the speech parameters after experiencing stress (aim 1). 

 First,  network  analyses  were  conducted  on  the  selected  speech  parameters  of  interest 

 at  baseline,  representing  the  unique  associations  between  each  of  these  parameters  in  a 

 resting  non-stressed  state.  This  network  shows  Harmonics-to-Noise  Ratio  (HNR)  as  the  most 

 central  node,  being  connected  to  all  other  speech  parameters.  The  strongest  connection  that 

 occurs  is  the  positive  connection  between  HNR  and  Fundamental  frequency  (F0),  implying  that 

 less  noise  is  present  in  higher  pitched  voices  and  vice  versa,  as  has  been  reported  by  Ferrand 
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 (2002).  Furthermore,  results  show  that  several  connections  between  most  parameters  are 

 observed,  which  differ  in  their  strength  and  orientation,  indicating  an  interacting  and  cohesive 

 network. 

 When  comparing  this  baseline  network  with  the  post-stressor  network,  no  differences 

 between  the  interrelations  of  the  different  speech  parameters  were  observed,  suggesting  that 

 the  relations  between  the  parameters  (selected  as  nodes  in  the  current  study)  do  not  change 

 after  a  stress  induction  procedure.  More  specifically,  in  both  models,  (1)  HNR  emerged  as  the 

 most  central  node,  (2)  the  strongest  connection  was  observed  between  HNR  and  F0,  and  (3)  all 

 parameters  were  connected  to  at  least  2  out  of  4  other  nodes  in  the  network.  The  fact  that  the 

 network  of  speech  parameters  was  highly  similar  after  versus  prior  to  the  stress  induction 

 procedure  is  an  interesting  and  innovative  observation,  as  it  shows  that  the  complex  interplay 

 between  each  of  the  above  presented  core  speech  parameters  is  not  impacted  by  stress  ,  and 

 as  such  cannot  be  used  as  an  indicator  for  stress  .  In  particular,  the  unique  interrelations  remained 

 stable in a stressed versus a non-stressed state. 

 In  addition  to  comparing  the  pre-  and  post-stress  networks  of  speech  parameters,  we 

 composed  an  individual  network  model  of  change  (delta)  scores  of  each  of  the  parameters  and 

 self-reported  negative  affect  to  gain  insight  into  the  unique  relations  between  speech 

 parameters  and  individual  differences  in  stress  reactivity  (aim  2).  We  found  that  changes  in 

 Jitter  (JIT),  a  fairly  central  speech  parameter  in  the  estimated  network,  were  directly  positively 

 related  to  changes  in  self-reported  negative  affect,  after  controlling  for  the  influence  of  other 

 parameters  in  the  network.  Even  though  after  the  regularization  procedure  the  strength  of  this 

 association  was  relatively  weak,  this  finding  is  important  as  it  suggests  a  unique  association 
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 between  speech  and  self-reported  negative  affect.  Jitter  quantifies  the  modulation  of  the 

 periodicity  of  the  voice  signal  and  as  such  is  related  to  the  amplitude  variation  of  the  sound 

 wave  and  is  mainly  affected  by  the  lack  of  control  of  vibration  of  the  cords  (Teixeira  et  al.,  2013). 

 Increased  jitter  has  been  observed  in  pathological  voices  (Teixeira  et  al.,  2013)  and  in  physical 

 task  stress  (Koblick,  2004),  whereas  decreased  jitter  is  often  discussed  in  the  context  of 

 psychological  stress  (Giddens  et  al.,  2013;  Van  Puyvelde  et  al.,  2018).  Yet,  the  literature  is 

 inconsistent,  as  both  a  decrease  and  an  increase  in  Jitter  have  been  observed  with  increased 

 stress  in  different  task  designs  (Giddens  et  al.,  2013).  However,  Jitter  has  not  been  reported  in 

 relation  to  negative  affect  (Giddens  et  al.,  2013).  In  early  studies,  it  has  been  suggested  that 

 Jitter  decreases  in  direct  relation  to  stress  levels  (as  described  in  Giddens  et  al.,  2013;  Van 

 Puyvelde  et  al.,  2018)  and  pointed  out  that  Jitter  might  be  a  better  indicator  of  stress  than  F0 

 (Hecker  et  al.,  1968;  Mendoza  &  Carballo,  1998).  More  recent  studies  have  shown  Jitter  to  be  a 

 crucial  feature  in  the  classification  of  stress  and  emotion  (e.g.  Li  et  al.,  2007;  Rothkrantz  et  al., 

 2004).  However,  Jitter  has  especially  been  highlighted  in  the  field  of  speech  pathology,  being 

 mainly  affected  by  a  lack  of  control  over  the  vibration  of  the  cords,  which  could  explain  its 

 occurrence  in  psychosocial  stress  (Teixeira  et  al.,  2013).  As  such,  the  unique  association 

 between  the  change  in  Jitter  and  the  change  in  self-reported  negative  affect  following  a  potent 

 psychosocial  stressor,  while  controlling  for  other  effects  and  variables,  opens  a  new  avenue  to 

 the research field of speech parameters in the context of psychological stress. 

 Interestingly,  even  though  the  network  model  of  the  current  study  depicts  a  direct 

 connection  between  change  in  self-reported  negative  affect  and  change  in  Jitter,  Jitter  is  by 

 itself  strongly  linked  to  several  other  speech  parameters  in  the  network  model.  A  direct 
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 connection  with  F0  was  to  be  expected  considering  that  Jitter  represents  the  variations  that 

 occur  in  the  fundamental  frequency  (F0).  Moreover,  especially  a  strong  association  between 

 change  in  Jitter  and  change  in  HNR  is  observed,  which  together  with  Jitter  form  the  most 

 central  nodes  of  the  network.  Prior  studies  have  demonstrated  that  HNR  is  more  sensitive  to 

 subtle  differences  in  vocal  function  than  is  Jitter  (Awan  &  Frenkel,  1994).  Although  direct 

 connections  between  the  other  speech  parameters  and  negative  affect  were  expected,  such  as 

 a  positive  unique  association  between  negative  affect  and  F0  (Giddens  et  al.,  2013),  our 

 findings  suggest  that  these  parameters  function  through  Jitter  in  their  connections  to  changing 

 mood  in  the  context  of  psychosocial  stress.  It  could  be  argued  that,  at  least  to  some  extent, 

 these parameters function through HNR and its strong interplay with Jitter too. 

 To  the  best  of  our  knowledge,  this  study  is  the  first  to  examine  the  impact  of 

 psychosocial  stress  on  the  unique  interrelations  between  key  speech  features,  and  how  change 

 in  these  parameters  in  the  context  of  psychosocial  stress  relates  to  change  in  self-report 

 measures  for  stress  (i.e.,  negative  affect).  Our  findings  provide  several  implications  for  the 

 measurement  of  speech  in  the  context  of  psychosocial  stress,  as  well  as  for  the  measurement 

 of  stress  via  speech  features.  That  is,  our  findings  point  towards  the  stability  of  the  network 

 structure  of  speech  features  in  the  context  of  stress,  and  the  role  of  Jitter  as  the  only  speech 

 feature  which  showed  a  direct  association  with  self-reported  negative  affect,  suggesting  the 

 importance  of  Jitter  in  the  context  of  stress  assessment  via  speech.  The  present  study  used  a 

 standardized  method  of  psychosocial  stress  induction  in  a  highly  controlled  lab  setting.  The 

 analysis  has  been  conducted  using  an  exploratory  and  data  driven  method  which  allows  to 

 65 



 model  complex  interrelations  in  an  intuitive  manner.  Therefore,  the  present  study’s  main 

 strength is the generation of trustworthy hypotheses. 

 Future  studies  using  large  sample  sizes  whilst  maintaining  a  within-subject  design  in  a 

 controlled  setting  are  absolutely  warranted.  On  the  other  hand,  considering  the  accessibility  of 

 high-quality  microphones,  combining  frequent  speech  recordings  with  continuous  smartwatch 

 recordings  of  heart  rate  and  skin  conductance  will  generate  more  dynamic  results  that  could 

 withstand  and  overcome  prior  limitations  of  controlled  lab  settings  and  can  uncover  the 

 stability  and  strength  of  the  different  relations.  However,  this  is  to  be  confirmed  by  basic 

 experimental  research  investigating  the  complex  relation  between  speech  and  stress  in  a 

 well-controlled  setting,  which  was  the  aim  of  the  current  study.  Finding  the  key  parameters  of 

 stressed  speech  and  being  able  to  use  these  to  assess  stress  levels  in  a  wide  variety  of 

 settings,  swiftly  and  cost-effectively,  will  enable  us  to  monitor  excessive  stress  levels  and  set 

 up interventions where necessary. 

 Even  though  the  current  study  has  several  strengths  such  as  such  as  its  innovative 

 nature  and  ecological  validity,  some  limitations  should  be  discussed.  Firstly,  it  should  be  noted 

 that  network  models  are  merely  descriptive  rather  than  predictive.  These  networks  are 

 undirected  and  therefore  do  not  allow  any  statements  regarding  the  direction  of  the  observed 

 effects.  This  data  driven,  explorative  analysis,  is  hypothesis  generating  as  the  identified  paths  in 

 the  networks  might  be  indicative  of  causal  relationships  which  should  be  tested  in  future 

 prospective  or  experimental  research.  Secondly,  as  network  models  value  each  individual 

 relation  between  the  different  parameters  in  an  unguided  manner,  we  were  limited  in  the 

 number  of  parameters  that  could  be  included  in  the  model  due  to  the  sample  size.  The  current 
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 set  of  parameters  was  selected  based  on  literature  research  and  has  brought  forth  a  network  of 

 interesting  relations.  However,  an  expanded  network  would  give  more  insight  into  the  stability 

 of  these  relations,  as  well  as  further  explain  the  dynamics  between  speech  parameters  and 

 negative  affect.  Thirdly,  the  required  larger  sample  size  to  do  so  would  also  increase  the 

 strength  of  the  network  comparison  (resting  state  vs.  stressed)  made.  However,  in  this  context 

 both  networks  were  highly  similar.  As  such,  the  non-significant  findings  for  the  network 

 comparison  test  are  unlikely  to  be  driven  by  a  lack  of  power.  Overall,  Jitter  seems  to  be  a 

 central  node  in  the  relation  between  speech  and  negative  affect,  which  should  therefore  be 

 further  studied  using  confirmatory  analyses.  Fourthly,  due  to  some  technical  setbacks,  most  of 

 the  collected  data  for  ECG  and  EDA  was  not  usable.  This  is  especially  unfortunate  as  this 

 would  give  insight  not  only  into  the  interplay  between  speech  and  self-reported  negative  affect 

 but  also  into  the  relations  with  other  indicators  of  objectively  experienced  stress  (e.g., 

 biomarkers). 

 2.6. Conclusions 

 Stress  has  long  been  a  much-discussed  topic,  and  as  such  many  different  methods  for 

 stress  measurement  have  been  proposed  over  the  years.  Recently,  speech  analysis  has  been 

 proposed  as  a  possible  physiological  marker  for  stress  which  can  be  measured  in  a  remote  and 

 non-invasive  matter.  The  current  study  deployed  network  analysis  to  investigate  the  unique 

 associations  between  specific  speech  parameters  prior  to  and  following  exposure  to  a 

 psychosocial  stressor  (aim  1),  and  to  model  the  unique  associations  between  specific  speech 

 features  and  self-reported  stress  (i.e.,  experienced  negative  affect;  aim  2).  For  this  purpose,  we 
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 relied  on  a  well-validated  stress  induction  procedure  in  a  controlled  lab  setting.  The  network  of 

 speech  parameters  was  highly  similar  after  versus  before  the  stress  induction,  suggesting  that 

 the  complex  interplay  between  each  of  the  used  speech  parameters  was  not  impacted  by 

 stress.  Interestingly,  changes  in  Jitter  were  directly  positively  related  to  changes  in  self-reported 

 negative  affect,  indicating  that  this  speech  feature  may  be  of  particular  interest  in  the  context  of 

 stress  assessment.  These  findings  warrant  further  investigation  in  the  diagnostic  value  of 

 speech features to monitor stress in daily life, which requires intensive time series data. 
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 Supplemental Figure 4. Strength centrality for the Stress Reactivity network. 
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 Supplemental Figure 5. Edge accuracy for the Stress Reactivity Network. 
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 Supplemental  Figure  6.  Stability  of  Strength  centrality  for  the  Stress  Reactivity  Network.  Note 

 that the correlation stability was adequate (.28). 
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 Supplemental Figure 7. Significant edge differences for the Stress Reac�vity Network 
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 Supplemental Figure 8. Circular layout plots for the Res�ng state (le�) and Stress (right) network models. 

 Supplemental Figure 9. Circular layout plots for the Stress Reac�vity Network 

 82 



 83 



 84 



 Feature calculation: 

 We  used  OpenSmile  2.3.0  (Eyben  et  l.,  2010)  with  the  GeMAPS  configuration  (Eyben  et  al., 

 2015)  to  extract  the  used  speech  features.  Here  we  will  describe  the  calculation  of  every 

 feature  with  reference  to  the  GeMAPS  configuration  paper  (Eyben,  F.,  Scherer,  K.,  Schuller,  B., 

 Sundberg,  J.,  André,  E.,  Busso,  C.,  Devillers,  L.,  Epps,  J.,  Laukka,  P.,  Narayanan,  S.,  &  Truong, 

 K.  (2015).  The  Geneva  Minimalistic  Acoustic  Parameter  Set  (  GeMAPS  )  for  Voice  Research  and 

 Affective  Computing.  IEEE  Transactions  on  Affective  Computing  ,  7  (2),  190–202. 

 https://doi.org/10.1109/TAFFC.2015.2457417). 

 F0 

 F0  variable  name  in  GeMAPS  configuration  output: 
 F0SEMITONEFROM27.5HZ_SMA3NZ_AMEAN 

 In the GeMAPS paper the calculation is described on page 198 as: 

 “The  fundamental  frequency  (F0)  is  computed  via  subharmonic  summation  (SHS)  in  the 
 spectral  domain  as  described  by  [60].  Spectral  smoothing,  spectral  peak  enhancement,  and 
 auditory  weighting  are  applied  as  in  [60].  15  harmonics  are  considered,  i.e.,  the  spectrum  is 
 octave  shift-added  15  times,  and  a  compression  factor  of  0.85  is  used  at  each  shifting  ([60]).  F0 
 ¼  0  is  defined  for  unvoiced  regions.  The  voicing  probability  is  determined  by  the  ratio  of  the 
 harmonic  summation  spectrum  peak  belonging  to  an  F0  candidate  and  the  average  amplitude 
 of  all  harmonic  summation  spectrum  bins,  scaled  to  a  range  ½0;  1_.  A  maximum  of  6  F0 
 candidates  in  the  range  of  55-1000  Hz  are  selected.  Online  Viterbi  post-smoothing  is  applied  to 
 select  the  most  likely  F0  path  through  all  possible  candidates.  A  voicing  probability  threshold  of 
 0:7  is  then  applied  to  discern  voiced  from  unvoiced  frames.  After  Viterbi  smoothing  the  F0 
 range  of  55–1000  Hz  is  enforced  by  setting  all  voiced  frames  outside  the  range  to  unvoiced 
 frames  (F0  ¼  0).  The  final  F0  value  is  converted  from  its  linear  Hz  scale  to  a  logarithmic  scale  – 
 a  semitone  frequency  scale  starting  at  27.5  Hz  (semitone  0).  However,  as  0  is  reserved  for 
 unvoiced frames, every value below semitone 1 (29.136 Hz) is clipped to 1. 

 HNR 
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 HNR variable name in GeMAPS configuration output: HNRDBACF_SMA3NZ_AMEAN 

 In the GeMAPS paper the calculation is described on page 199 as: 

 “The  HNR  gives  the  energy  ratio  of  the  harmonic  signal  parts  to  the  noise  signal  parts  in  dB.  It 
 is  estimated  from  the  short-time  autocorrelation  function  (ACF)  (60  ms  window)  as  the 
 logarithmic  ratio  of  the  ACF  amplitude  at  F0  and  the  total  frame  energy,  expressed  in  dB,  as 
 given by [61]: 
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 where  ACFT0  is  the  amplitude  of  the  autocorrelation  peak  at  the  fundamental  period  (derived 
 from  the  SHS-based  F0  extraction  algorithm  described  above)  and  ACF0  is  the  zeroth  ACF 
 coefficient  (equivalent  to  the  quadratic  frame  energy).  The  logarithmic  HNR  value  is  floored  to 
 _100 dB to avoid highly negative and varying values for low-energy noise. 

 Jitter 

 Jitter variable name in GeMAPS configuration output: JITTERLOCAL_SMA3NZ_AMEAN 

 In the GeMAPS paper the calculation is described on page 198 as: 

 “  Jitter,  is  computed  as  the  average  (over  one  60  ms  frame)  of  the  absolute  local  (period  to 
 period)  jitter  Jppðn0Þ  scaled  by  the  average  fundamental  period  length.  For  two  consecutive 
 pitch  periods,  with  the  length  of  the  first  period  n0  _  1  being  T0ðn0  _  1Þ  and  the  length  of  the 
 second  period  n0  being  T0ðn0Þ,  the  absolute  period  to  period  jitter,  also  referred  to  as 
 absolute local jitter, is given as follows [61]: 

 𝐽 
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 This  definition  yields  one  value  for  Jpp  for  every  pitch  period,  starting  with  the  second  one.  To 
 obtain  a  single  jitter  value  per  frame  for  N0  local  pitch  periods  n0  ¼  1  .  .  .N0  within  one  analysis 
 frame, the average local jitter Jpp is given by: 
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 In  order  to  make  the  jitter  value  independent  of  the  underlying  pitch  period  length,  it  is  scaled 
 by  the  average  pitch  period  length.  This  yields  the  average  relative  jitter,  used  as  the  jitter 
 measure in our parameter set: 
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 Voiced (mean voiced segment length) 

 Mean  voiced  segment  length  variable  name  in  GeMAPS  configuration  output: 

 MEANVOICEDSEGMENTLENGTHSEC 

 In the GeMAPS paper the calculation is described on page 193 as: 

 “  the mean length and the standard deviation of continuously  voiced regions (F0 > 0),” 

 F1/2 

 This  feature  is  feature  is  computed  by  calculating  the  ratio  between  Formant  1  and  Formant  2. 

 These variables are found in the GeMAPS configuration output under the names: 

 F1FREQUENCY_SMA3NZ_AMEAN & F2FREQUENCY_SMA3NZ_AMEAN 

 In the GeMAPS paper the calculation is described on page 199 as: 

 “Both  formant  bandwidth  and  formant  centre  frequency  are  computed  from  the  roots  of  Linear 
 Predictor (LP) [67] coefficient polynomial. The algorithm follows the implementation of [11].” 

 Relevant references from GeMAPS configuration paper with according numbers: 

 [11]  P.  Boersma,  “Praat,  a  system  for  doing  phonetics  by  computer,”  Glot  Int.,  vol.  5,  nos.  9/10, 
 pp. 341–345, 2001. 
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 [60]  D.  J.  Hermes,  “Measurement  of  pitch  by  subharmonic  summation,”  J.  Acoust.  Soc.  Amer., 
 vol. 83, no. 1, pp. 257–264, 1988. 

 [61]  B.  Schuller,  Intelligent  Audio  Analysis  (Signals  and  Communication  Technology).  New  York, 
 Ny, USA: Springer, 2013. 

 [67]  J.  Makhoul,  “Linear  prediction:  A  tutorial  review,”  Proc.  IEEE,  vol.  63,  no.  5,  pp.  561–580, 
 Apr. 1975. 

 Other supplemental materials 

 Read-out-loud Text: 

 “Papa  en  Marloes  staan  op  het  station.  Ze  wachten  op  de  trein.  Eerst  hebben  ze  een  kaartje 

 gekocht.  Er  stond  een  hele  lange  rij,  dus  dat  duurde  wel  even.  Nu  wachten  ze  tot  de  trein  eraan 

 komt.  Het  is  al  vijf  over  drie,  dus  het  duurt  nog  vier  minuten.  Er  staan  nog  veel  meer  mensen  te 

 wachten.  Marloes  kijkt  naar  links,  in  de  verte  ziet  ze  de  trein  al  aankomen.”  From:  van  de  Weijer 

 and Slis (1991) 

 Van  de  Weijer,  J.,  Slis,  I.  (1991).  Nasaliteitsmeting  met  de  Nasometer.  Logopedie  en  Foniatrie, 

 63, 97-101. 

 Translation:  “Papa  and  Marloes  are  at  the  station.  They  are  waiting  for  the  train.  First,  they 

 bought  a  ticket.  There  was  a  very  long  queue,  so  it  took  a  while.  Now  they  wait  for  the  train  to 

 arrive.  It's  already  five  past  three,  so  it's  still  four  minutes.  Many  more  people  are  waiting. 

 Marloes looks to the left, she sees the train coming in the distance.” 

 This  text  is  70  words  and  has  been  developed  as  a  phonetically  balanced  text  that  matches  the 

 sound  frequencies  as  they  occur  in  the  Dutch  language  as  validated  by  van  den  Broecke  and 

 described  in  van  de  Weijer  (1990)  and  van  de  Weijer  &  Slis  (1991).  During  both  moments  (pre- 
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 and  post-stressor)  they  articulated  this  text  only  once.  We  used  the  OpenSmile  toolbox  that 

 computes  mean  values  for  each  fragment  per  variable  (for  more  information  see:  Eyben  et  al., 

 2010 and Eyben et al., 2015) resulting in the use of one datapoint per variable per recording. 

 The voiced to voiceless ratio is as follows: 

 Pre-stress: Mean = 2.103, SD = .533 

 Post-stress: Mean = 2.071, SD = .549 

 Distributions  were  similar  between  the  two  moments.  Data  with  regards  to  each  individual 

 participants number of voiced and unvoiced frames has been added to OSF. 

 Study Flowchart 
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 Screenshots 
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 3.1. Abstract 

 The  use  of  speech  as  a  digital  biomarker  to  detect  stress  levels  is  increasingly  gaining 

 attention.  Yet,  heterogeneous  effects  of  stress  on  specific  acoustic  speech  features  have  been 

 observed,  possibly  due  to  previous  studies’  use  of  different  stress  labels/categories  and  the 

 lack  of  solid  stress  induction  paradigms  or  validation  of  experienced  stress.  Here,  we  deployed 

 a  controlled,  within-subject  psychosocial  stress  induction  experiment  in  which  participants 

 received  both  neutral  (control  condition)  and  negative  (negative  condition)  comparative 

 feedback  after  solving  a  challenging  cognitive  task.  This  study  is  the  first  to  use  a  (non-actor) 

 within-participant  design  that  verifies  a  successful  stress  induction  using  both  self-report  (i.e., 

 decreased  reported  valence)  and  physiological  measures  (i.e.,  increased  heart  rate  acceleration 

 using  event-related  cardiac  responses  during  feedback  exposure).  Analyses  of  acoustic  speech 

 features  showed  a  significant  increase  in  Fundamental  Frequency  (F0)  and  Harmonics-to-Noise 

 Ratio  (HNR),  and  a  significant  decrease  in  shimmer  during  the  negative  feedback  condition. 

 Our  results  using  read-out-loud  speech  comply  with  earlier  research,  yet  we  are  the  first  to 

 validate  these  results  in  a  well-controlled  but  ecologically-valid  setting  to  guarantee  the 

 generalization  of  our  findings  to  real-life  settings.  Further  research  should  aim  to  replicate  these 

 results  in  a  free  speech  setting  to  test  the  robustness  of  our  findings  for  real-world  settings  and 

 should include semantics to also take into account what you say and not only how you say it. 

 93 



 3.2. Introduction 

 Stress  is  omnipresent  in  modern  society.  Whereas  low  levels  of  stress  can  increase 

 one’s  performance,  the  chronic  experience  of  stress  is  a  common  risk  factor  for  a  variety  of 

 different  mental  and  physical  health  problems  (Miller  et  al.,  2002;  Slavich,  2016),  making  it  a 

 critical  factor  in  determining  human  health  (Epel  et  al.,  2018).  Therefore,  frequent,  accurate,  and 

 affordable  stress  measurement  tools  would  be  of  great  contribution  to  society  as  regular 

 observation of increased acute stress levels would be indicative of a chronically stressed state. 

 Acute  stress,  in  scientific  studies,  is  often  measured  by  using  either  self-report 

 assessments  or  monitoring  physiological  signals  such  as  electrocardiography  or  electrodermal 

 activity  (Giannakakis  et  al.,  2022).  However,  the  use  of  speech  as  a  novel  biomarker  for  (acute) 

 stress  has  rapidly  gained  attention  due  to  it  being  non-intrusive  (no  physical  connection 

 necessary  to  the  body),  affordable  to  acquire,  and  ubiquitous,  considering  the  increasing 

 presence  of  high-quality  microphones  in  everyday  objects  (Giddens  et  al.,  2013;  Monroe, 

 2008).  As  stress  influences  important  factors  in  speech  production  such  as  breathing,  cardiac 

 activity,  or  general  pose,  it  is  hypothesized  that  experienced  stress  could  be  detected  from 

 acoustic  features  of  one’s  voice  (for  an  extensive  explanation  of  each  step  of  speech 

 production  with  regards  to  these  features  (See:  Van  Puyvelde  et  al.,  2018).  Moreover,  speech 

 has  increasingly  shown  to  be  a  potential  sensitive  marker  for  depression,  schizophrenia,  and 

 autism  (Cho  et  al.,  2022;  Koops  et  al.,  2021;  Voppel  et  al.,  2022).  Since  stress  is  considered  a 

 key  underlying  working  mechanism  of  negative  mood  and  a  risk  factor  for  the  development  of 

 mood  disorders  and  the  expression  of  a  wide  range  of  psychological  diseases,  its  effects  on 
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 speech  could  further  progress  the  (early)  detection  of  numerous  psychological  diseases.  In 

 addition,  stress  could  affect  what  words  you  utter,  their  complexity,  and  other  prosodic  features 

 due  to  changes  in  cognitive  load  (Paulmann  et  al.,  2016;  Sandi,  2013).  However,  to  isolate  and 

 evaluate  the  effects  of  stress  on  acoustic  speech  features,  it  is  necessary  to  exclude  both 

 interindividual  differences  in  linguistic  capabilities  and  acoustic  effects  induced  by  variations  in 

 words  and  sentences  by  using  read-out-loud  speech  fragments  before  moving  on  to  include 

 linguistic features such as syntax and semantics. 

 As  the  field  of  measuring  stress  in  speech  is  evolving  quickly,  it  is  proposed  that  the 

 vocal  response  to  stress  may  be  as  individual  and  unique  as  the  voice  itself,  and  thus  more 

 isolated  studies  that  control  for  interindividual  differences  are  required  (Giddens  et  al.,  2013; 

 Van  Puyvelde  et  al.,  2018).  Whereas  many  recent  studies  use  large  samples  of  audio  fragments 

 and  extract  a  wide  scale  of  features  using  easily  accessible  toolboxes  such  as  PRAAT 

 (Boersma,  2001)  and  OpenSMILE  (Eyben  et  al.,  2010),  some  limitations  can  be  noted.  It  is 

 argued  that  these  studies  1)  are  often  between-subject,  therefore  unable  to  contain 

 interindividual  differences  in  the  stress  response,  2)  lack  a  valid  verification  of  the  subject’s 

 emotional  state,  or  3)  include  a  wide  range  of  (acoustic)  features  that  lack  scientific  basis, 

 which  increases  the  risk  of  overfitted  models  that  would  not  generalize  well  to  everyday  life 

 situations (Giddens et al., 2013; Kappen et al., 2022; Van Puyvelde et al., 2018). 

 Psychosocial  stressors  are  one  of  the  most  potent  and  ecologically-valid  stressors  and 

 are  induced  in  situations  of  social  evaluation  or  exclusion  (Dickerson  &  Kemeny,  2004;  Kappen 

 et  al.,  2022;  Kirschbaum  &  Hellhammer,  1994)  .  Our  former  study  used  a  similar  paradigm, 

 which  confirmed  the  stress  induction  was  successful,  but  the  study  was  limited  to  pre-,  and 
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 post-stressor  measurements,  thus  lacking  a  control/neutral  condition  (Kappen  et  al.,  2022).  In 

 our  current  study,  a  successful  stress  induction  will  be  determined  based  on  both  self-reports 

 (valence,  arousal)  throughout  the  paradigm  and  physiological  activity  (cardiac  acceleration  and 

 deceleration)  during  the  negative  versus  the  control  feedback  exposure.  We  expect  to  find 

 decreases  for  jitter  (vocal  frequency  variation)  and  shimmer  (vocal  intensity  variation)  as  that  is 

 the  direction  of  observed  effects,  however,  results  are  heterogeneous  (Giddens  et  al.,  2013; 

 Van  Puyvelde  et  al.,  2018).  Harmonics-to-noise  ratio  (HNR;  added  noise  in  the  voice)  has  been 

 shown  to  decrease  in  the  context  of  a  physical  stressor  (i.e.,  workout),  and  mixed  results  are 

 observed  in  the  context  of  psychological  stress  (Giddens  et  al.,  2013;  Godin  et  al.,  2012;  Godin 

 &  Hansen,  2015;  Mendoza  &  Carballo,  1998).  We  included  HNR  as  it  is  frequently  described  in 

 the  literature  and  changes  are  observed,  however,  we  have  no  expected  direction  for  this 

 effect.  Lastly,  we  expect  participants’  speech  rates  to  increase.  This  feature  is  not  always 

 included  in  analyses  but  has  shown  robust  results  in  free  speech  settings  (Giddens  et  al.,  2010, 

 2013;  Rothkrantz  et  al.,  2004).  Therefore,  we  believe  we  contribute  to  the  existing  literature  by 

 1)  a  matter  of  developing  a  new  psychophysiological  methodology  for  stress  measurement, 

 and  2)  do  so  by  designing  a  solid  experimental  paradigm  that  allows  us  to  induce  and  validate 

 experienced stress on an individual (within-participant) basis. 

 Despite  mixed  results  in  acoustic  changes  due  to  acute  stress,  some  acoustic  features 

 get  described  more  often  than  others  in  literature.  As  such,  we  will  focus  on  these  key  acoustic 

 speech  features  from  literature  in  the  current  study.  The  most  homogeneous  results  are  found 

 for  the  Fundamental  Frequency  (F0)  of  the  voice,  which  refers  to  the  frequency  at  which  the 

 vocal  cords  vibrate  (i.e.  pitch),  seeing  it  generally  increases  with  increased  stress  (Giddens  et 

 96 



 al.,  2013;  Van  Puyvelde  et  al.,  2018).  We  expect  to  find  decreases  for  jitter  (vocal  frequency 

 variation)  and  shimmer  (vocal  intensity  variation)  as  that  is  the  direction  of  observed  effects, 

 however,  results  are  heterogeneous  (Giddens  et  al.,  2013;  Van  Puyvelde  et  al.,  2018). 

 Harmonics-to-noise  ratio  (HNR;  added  noise  in  the  voice)  has  been  shown  to  decrease  in  the 

 context  of  a  physical  stressor  (i.e.,  workout),  and  mixed  results  are  observed  in  the  context  of 

 psychological  stress  (Giddens  et  al.,  2013;  Godin  et  al.,  2012;  Godin  &  Hansen,  2015;  Mendoza 

 &  Carballo,  1998).  We  included  HNR  as  it  is  frequently  described  in  the  literature  and  changes 

 are  observed,  however,  we  have  no  expected  direction  for  this  effect.  Lastly,  we  expect 

 participants’  speech  rates  to  increase.  This  feature  is  not  always  included  in  analyses  but  has 

 shown  robust  results  in  free  speech  settings  (Giddens  et  al.,  2010,  2013;  Rothkrantz  et  al., 

 2004). 

 In  summary,  in  the  presented  study  in  this  paper,  we  analyze  high-quality  read-out-loud 

 speech  fragments  collected  from  a  large  (non-actor)  sample  in  a  within-subject  stress 

 paradigm,  containing  both  a  control  and  a  negative  feedback  condition.  In  doing  so,  we  can 

 verify  the  experienced  stress  by  the  subjects  (based  on  both  self-reports  and  objective 

 physiological  measures).  We  present  trustworthy  and  ecologically  valid  information  on  the 

 distilled  effects  of  (psychological)  stress  on  key  acoustic  speech  features,  such  as  F0 

 (Fundamental  Frequency;  pitch),  jitter  (vocal  frequency  variation),  shimmer  (vocal  intensity 

 variation),  harmonics-to-noise  ratio  (HNR;  added  noise  in  the  voice),  and  speech  rate  (Giddens 

 et  al.,  2013;  Kappen  et  al.,  2022;  Van  Puyvelde  et  al.,  2018).  These  results  will  be  the  basis  for 

 further  deterministic  modeling,  digital  biomarker  design,  and/or  analysis  of  speech  in  the 

 context  of  stress  detection  and  emotion  recognition.  Moreover,  these  results  will  contribute  to 
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 the  field  of  vocal  markers  of  neuropsychiatric  conditions,  considering  stress  is  suggested  to  be 

 a  core  psychological  mechanism  associated  with  a  range  of  mood  disorders  (e.g.  see:  Cho  et 

 al., 2022; Koops et al., 2021; Voppel et al., 2022). 

 3.3. Methods 

 This  study  was  part  of  a  larger  project  that  investigates  the  effects  of  a  (psychosocial) 

 stressor  on  neural  correlates.  Results  of  electrophysiological  correlates  will  be  published 

 elsewhere.  Moreover,  collected  data  that  was  not  part  of  the  current  paper’s  research 

 objectives will only be described in the supplemental materials. 

 3.3.1. Participants 

 A  convenience  sample  of  77  subjects  (50  women,  27  men,  age  M  =  23.13,  SD  =  6.19) 

 was  recruited  through  social  media  with  a  post  containing  the  cover  story  that  this  study 

 gauges  future  (academic)  success.  Upon  registration,  participants  were  checked  for  exclusion 

 criteria  (see  supplemental  material).  The  study  was  conducted  in  accordance  with  the 

 declaration  of  Helsinki  and  received  ethical  approval  from  the  Ghent  University  hospital  ethical 

 committee  (registration  number:  B670201940636).  All  participants  gave  written  informed 

 consent  before  participating  and  were  debriefed  afterward  on  the  true  purpose  of  the  study.  A 

 30 Euro compensation fee was awarded upon completion through bank transfer. 
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 3.3.2. Apparatus and procedure 

 3.3.2.1. Read-out-loud text “Marloes” 

 To  collect  speech  fragments,  participants  were  instructed  throughout  the  experiment  to 

 read  a  standardized  text  of  five  sentences  out  loud.  This  “Marloes”  text  is  often  used  in  Dutch 

 speech  therapy  due  to  the  text  containing  a  similar  frequency  distribution  as  occurs  in  the 

 Dutch  language  (Van  de  Weijer  &  Slis,  1991;  See  supplemental  material  for  full  text). 

 Participants  were  instructed  to  read  the  text  out  loud  five  times  at  home  prior  to  the  experiment 

 to familiarize themselves with it and to exclude novelty effects (Kappen et al., 2022). 

 3.3.2.2. On-site experimental session 

 The  experiment  was  conducted  in  a  dedicated  room  in  the  Department  of  Neurology  at 

 the  Ghent  University  Hospital.  The  ECG  (ElectroCardioGram)  electrodes  were  applied  (1 

 electrode  just  below  the  left  collarbone  and  1  electrode  on  the  left  lower  rib),  after  which  the 

 experimental  phase  commenced.  Participants  were  seated  in  an  upright  position  in  front  of  a 

 computer screen (Dell E2216H). 

 The  experiment  was  carried  out  on  a  computer  (Dell,  Windows  10,  experiment  designed 

 in  E-Prime  2.0  (Schneider  et  al.,  2002)  and  a  tablet  (Huawei  MediaPad  M5,  custom-designed 

 Android  app;  see  https://osf.io/78g9s/  ).  The  experimental  task  was  completed  on  the 

 computer,  while  self-reports  and  speech  collection  were  done  on  the  tablet  to  circumvent  any 

 built-in  preprocessing  of  the  audio  signals  in  E-Prime  2.0.  The  experiment  started  with  a 

 10-minute  resting  block  (to  achieve  habituation)  in  which  participants  closed  their  eyes  to 

 ensure  a  relaxed  state.  After  this,  the  Control  feedback  condition  commenced.  After  this 
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 condition,  there  was  another  10-minute  resting  block,  followed  by  a  Negative  feedback 

 condition  (see  Figure  1).  At  three  fixed  points  throughout  the  two  feedback  conditions,  i.e.  at 

 one-third,  two-thirds  of  the  way,  and  at  the  end  of  the  condition,  participants  were  offered  a 

 Response  Block  .  The  Response  Block  was  executed  on  the  tablet  and  starts  with  the  out-loud 

 reading  of  the  “Marloes”  text.  After  this,  participants  answered  Self-Assessment  Manikin  scales 

 (SAMs;  Valence,  Arousal;  see  supplemental  material;  Bradley  &  Lang,  1994)  by  responding 

 which  manikin  best  represented  their  feelings.  Valence  was  described  as  how  negative/positive 

 they  felt  at  that  instance,  whereas  arousal  was  described  as  how  calm/restless  they  felt 

 (Russell, 1980). 

 Figure 1 

 Flowchart of experimental design. 

 Note.  Two  feedback  conditions  (control/negative),  both  preceded  by  a  10-minute  resting  period.  Speech 

 and  self-reports  (SAMs;  Self-Assessment  Manikins)  were  recorded  at  three  points  in  each  condition; 

 yielding 3 data points per participant per condition. 

 3.3.2.3. Trial 

 During  each  (experimental)  feedback  condition  (control  and  negative),  participants  were 

 offered  three  subblocks.  Each  subblock  ended  when  participants  either  completed  11  trials  or 

 6  minutes  had  passed  since  the  start  of  that  subblock.  During  each  trial,  participants  were 
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 offered  a  Raven’s  Matrix  (Raven,  2000):  a  3x3  raster  of  illustrations  that  follows  a  certain 

 pattern/logic  with  one  spot  open  which  they  had  to  fill  in  (see  Figure  2  for  a  visual 

 representation  of  the  trial-feedback  sequence).  Participants  could  choose  from  8  different 

 options  to  fill  in  the  blank  spot  and  reply  with  their  right  hand  using  the  Numpad  on  a  regular 

 US-layout  keyboard.  Above  the  raster,  a  countdown  was  shown  indicating  the  number  of 

 seconds  left  before  the  exercise  timed  out.  The  allowed  time  differed  per  trial  and  was 

 dependent  on  the  difficulty  level;  participants  had  either  20  (for  easy  levels),  45  (for  medium 

 levels),  or  100  seconds  (for  difficult  levels)  to  respond.  The  difficulty  level  was  validated  in  a 

 pilot  test  to  have  it  balanced  over  subblock  as  well  as  over  experimental  (feedback)  condition 

 and  randomized  per  participant.  After  either  a  response  or  a  time-out,  a  feedback  screen  was 

 shown.  The  feedback  screen  consisted  of  three  elements:  1)  At  the  top,  a  red,  yellow,  and 

 green  bar  was  displayed  with  vertical  arrows  indicating  their  performance  and  the  average 

 group  performance;  2)  It  was  indicated  whether  their  answer  was  correct  or  incorrect  (or 

 timed-out),  this  was  always  in  accordance  with  their  actual  answer;  and  3)  At  the  bottom  of  the 

 screen,  their  response  time  was  indicated  as  well  as  a  textual  comparison  to  the  reference 

 group.  This  paradigm  was  inspired  by  the  Montreal  Imaging  Stress  Task  (MIST;  Dedovic  et  al., 

 2005),  but  we  used  Raven’s  Matrices  rather  than  mathematical  puzzles  to  reduce  the  stress 

 that  is  experienced  by  people  who  are  not  good  at  math,  and  because  something  more  similar 

 to  an  IQ  test  would  fit  better  in  the  cover  story.  In  addition,  the  time  pressure  did  not  vary 

 between  the  control  and  negative  feedback  conditions  in  our  paradigm,  shifting  it  from  a 

 cognitive stressor to a psychosocial stressor. 

 101 



 3.3.2.4. Stress induction 

 Both  (experimental)  feedback  conditions  were  essentially  identical,  except  for  the 

 comparison  group  and  the  received  feedback.  During  the  control  feedback  condition,  to 

 increase  the  credibility  of  the  cover  story,  participants  are  told  that  they  are  being  compared  to 

 a  sample  of  people  who  are  randomly  sampled  from  the  population  (average  individuals).  In 

 order  to  successfully  induce  stress  in  a  repeated  MIST  paradigm,  there  must  be  a  credible 

 social  evaluation.  As  such,  a  credible  cover  story  as  used  here  contributes  to  the  ecological 

 validity  of  the  stressor  (De  Calheiros  Velozo  et  al.,  2021).  When  seeing  the  feedback,  they  are 

 shown  to  be  performing  on  par  with  the  reference  group  to  ensure  control/neutral  feedback. 

 During  the  negative  feedback  condition,  participants  are  told  that  they  are  being  compared  to  a 

 group  of  highly  educated,  well-performing  individuals.  When  observing  the  colored  feedback 

 bar,  they  are  shown  to  be  performing  increasingly  worse  over  the  course  of  each  subblock, 

 irrespective  of  their  actual  performance  to  enable  the  negative  feedback  (see  supplemental 

 materials  for  a  visual  representation  of  increasingly  negative  feedback  over  subblocks). 

 Moreover,  whenever  the  participant  found  the  correct  answer,  the  feedback  would  indicate  that 

 XX%  of  the  reference  group  found  the  correct  answer  faster  than  them,  still  inducing  a  negative 

 comparison  even  when  they  did  give  a  correct  answer.  Feedback  was  displayed  for  6  seconds, 

 after  which  the  next  trial  commenced.  See  Figure  2  for  a  flow  matrix  of  a  trial  sequence 

 including  examples  of  the  different  feedback  types  for  both  correct  and  incorrect  responses  in 

 both  the  control  and  negative  feedback  conditions.  Prior  to  the  experimental  task,  participants 

 are  told  a  cover  story  that  the  study’s  objective  is  to  predict  future  success  and  that  this  task 

 was commonly used in IQ tests and was valid in this prediction. 
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 Figure 2 

 A flow diagram of the trial sequence 

 Note.  Flow  diagram  of  a  trial  sequence  including  both  options  (correct/incorrect)  for  both 

 conditions  (control/negative  feedback)  after  a  response  to  a  Raven’s  Matrix.  On  the  colored  bar,  two 

 arrows  indicated  their  own  performance  and  the  comparison  group  performance  (accompanied  by  text) 

 which  shifted  after  every  trial.  The  displayed  colors  were  indicators  of  overall  performance.  Matrices 

 varied per condition but were balanced in difficulty over feedback conditions and subblocks. 

 3.3.3. Extraction of speech features 

 All  audio  fragments  were  manually  checked  for  quality,  and  only  full  and  clear  (i.e.,  no 

 excessive  clipping  or  background  noise)  recordings  were  included.  31  control  and  34  negative 

 feedback  recordings  were  of  insufficient  quality  and  were  not  used  in  subsequent  analyses, 

 resulting  in  209  control  feedback  recordings  of  71  out  of  77  participants  and  206  negative 

 feedback  recordings  of  69  out  of  77  participants.  Features  were  extracted  using  OpenSmile 

 2.3.0  (Eyben  et  al.,  2010)  with  the  GeMAPS  configuration  (Eyben  et  al.,  2015),  a  minimalistic 

 acoustic  feature  set  frequently  used  in  voice  research  and  affective  computing.  From  this 
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 feature  set,  Fundamental  frequency  (F0),  Jitter,  Shimmer,  Harmonics-to-Noise  Ratio  (HNR), 

 voiced  segment  length,  and  mean  voiced  segments  per  second  (a  proxy  for  speech  speed) 

 were  selected.  It  is  important  to  remark  that  the  features  were  computed  locally  via  a 

 sliding-window  and  then  mean-aggregated  over  the  whole  utterance,  thus  not  displaying  high 

 temporal  changes.  For  detailed  information  regarding  feature  calculation  and  extraction 

 procedure, we refer the reader to Eyben et al. (2010) and Section 6.1 of Eyben et al. (2015). 

 3.3.4. Data-Analysis 

 All  data  were  preprocessed  using  Python  3.9.6  and  statistical  analyses  were  performed 

 using  R4.1.1  (for  detailed  version  information  of  the  software  and  packages  used,  see 

 supplemental  materials).  As  a  part  of  our  manipulation  check,  we  collected  ECG  data 

 throughout  the  task  and  analyzed  the  event-related  cardiac  reactivity  during  feedback  exposure 

 (See  for  a  similar  approach:  Gunther  Moor  et  al.,  2010;  van  der  Veen  et  al.,  2019).  The  recorded 

 IBIs  (InterBeat  Intervals;  time  in  ms  between  individual  heartbeats)  were  corrected  for  artifacts 

 using  our  custom  code  (see  https://osf.io/78g9s/  ).  We  assessed  the  data  quality,  resulting  in 

 the  use  of  73  out  of  77  participants’  cardiac  responses.  Twelve  IBIs  were  selected  around  the 

 feedback:  the  IBI/heartbeat  closest  to  feedback  onset  (from  now  on  called  IBI  0  ),  three  IBIs 

 preceding  the  feedback  (  IBI  -3  ,  IBI  -2  ,  IBI  -1  ),  and  eight  IBIs  during  the  feedback  exposure  (  IBI  1  to 

 IBI  8  ).  By  the  8th  IBI  collected  after  feedback  onset,  75%  of  the  trials  had  passed  the  6  seconds 

 of  feedback  exposure  (See  supplemental  materials).  In  accordance  with  the  literature  (Gunther 

 Moor  et  al.,  2010;  van  der  Veen  et  al.,  2014)  ,  we  referenced  IBI  difference  scores  to  the  second 

 IBI  preceding  the  feedback  onset  (IBI  -2  )  for  each  trial.  These  referenced  IBI  difference  scores 

 are referred to as delta IBIs throughout the manuscript. 
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 To  control  for  the  potential  effect  of  sex  on  the  different  speech  features,  sex  was 

 considered  as  a  fixed  effect  for  each  individual  model  prior  to  statistical  inference.  However,  to 

 make  sure  our  models  were  parsimonious,  we  bottom-up  tested  whether  adding  sex  as  an 

 independent  variable  to  the  model  improved  each  model’s  fit.  For  each  dependent  variable,  we 

 compared  models  that  included  and  excluded  sex  ,  and  it  was  only  included  in  the  model  if  it 

 showed  to  be  a  significant  contributor  after  comparing  models  with  reducing  complexity  using 

 χ2  goodness-of-fit  tests  within  the  ‘anova()’  function.  The  statistical  significance  level  was  set 

 to  p  <  .05  and  in  the  results  section,  we  describe  for  each  individual  model  whether  sex  was  a 

 significant contributor and thus included. 

 For  the  manipulation  checks  (i.e.,  IBIs  and  self-reports)  and  speech  features  (i.e.,  F0, 

 jitter,  shimmer,  harmonics-to-noise  ratio,  and  speech  rate),  we  used  the  ‘lme4’  (Bates  et  al., 

 2014)  and  ‘car’  (Bates  et  al.,  2014;  Fox  et  al.,  2012)  R  packages  to  fit  generalized  linear  mixed 

 models  (GLMMs).  The  IBI  model  featured  delta  IBI  (referenced  to  IBI  -2  ;  relative  change  of  IBI  as 

 compared  to  IBI  -2  indicating  acceleration  (i.e.,  negative  delta  IBI)  and  deceleration  (i.e.,  positive 

 delta  IBI)  of  the  heart)  as  a  dependent  variable  with  12  levels  (IBI  -3  to  IBI  8  ),  feedback  condition 

 (2  levels;  control  vs  negative  feedback  condition)  as  a  fixed  effect,  and  the  subject  as  a  random 

 intercept.  The  ANOVA  comparison  for  the  model  including  vs  excluding  sex  as  a  fixed  effect 

 showed  no  significant  improvement  and  sex  was  thus  excluded  from  the  model.  The  valence 

 and  arousal  models  followed  a  similar  structure.  Either  valence  or  arousal  as  the  dependent 

 variable  on  a  7-point  Likert  scale,  having  2  levels  of  feedback  condition  (control  vs  negative 

 feedback)  as  a  fixed  effect,  and  subject  as  a  random  intercept.  Again,  the  ANOVA  analysis 

 showed  no  significant  contribution  of  sex  to  these  models,  and  sex  was  thus  also  excluded 

 from  these  models  as  a  fixed  effect.  The  models  for  the  speech  features  were  identical  to  the 
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 valence/arousal  models,  with  feedback  condition  (2  levels;  control  vs  negative  feedback,  each 

 containing  3  data  points  per  participant)  as  a  fixed  effect,  and  subject  as  random  intercept 

 whilst  controlling  for  sex  by  including  it  as  a  fixed  effect  if  aforementioned  method  showed  it  to 

 have  a  significant  contribution  to  the  model,  resulting  in  the  (G)LMM  formulas  of  the  following 

 structure  (in  R  notation  for  ‘lme4’  );  DependentVariable  ~  Condition  +  Sex  +  (1|ID)  or 

 DependentVariable  ~  Condition  +  (1|ID)  .  Each  dependent  variable’s  specific  model  is  also 

 reported in the results section. 

 The  sum  of  squares  was  estimated  using  the  type  III  approach,  and  the  statistical 

 significance  level  was  set  to  p  <  .05.  Follow-up  tests  with  pairwise  comparisons  of  the  EMMs 

 (estimated  marginal  means)  were  performed  with  the  ‘emmeans’  package  (Lenth,  2018),  using 

 false discovery rate (FDR) to correct for multiple testing (Benjamini & Hochberg, 1995). 

 3.4. Results 

 3.4.1. Manipulation check 

 A  manipulation  check  was  conducted  to  verify  whether  participants  experienced 

 increased  stress  during  the  negative  feedback  condition  compared  to  the  control  feedback 

 condition  by  setting  side-by-side  self-reports  and  physiological  activity  during  both  feedback 

 conditions. 

 3.4.1.1. Self-reports 

 At  three  different  set  moments  during  each  condition,  participants  answered  how  they 

 were  feeling  with  regard  to  valence  and  arousal  using  SAMs  (Self-Assessment  Manikins). 

 Valence,  with  the  formula  Valence  ~  Condition  +  (1|ID)  ,  was  best  described  by  an  LMM  (linear 
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 mixed  model)  with  AIC  equal  to  1055  (Akaike  Information  Criterion).  The  LMM  showed  a 

 significant  decrease  of  valence  in  the  negative  feedback  condition  (Figure  3a)  χ2  (1)  =  83.01,  b  = 

 .594,  SE  =  .0652,  t  =  9.111,  d  =  .91,  p  <  .001.  Arousal,  with  the  formula  Arousal  ~  Condition  + 

 (1|ID)  ,  was  best  described  by  a  GLMM  (generalized  linear  mixed  model)  with  Gamma 

 distribution  and  identity  link,  AIC  =  1069.  The  GLMM  showed  a  significant  decrease  in  arousal 

 during  the  negative  feedback  condition  (Figure  3b)  χ2  (1)  =  4.47,  b  =  .135,  SE  =  .0639,  z  = 

 2.116,  d  = .50,  p  = .034. 

 Figure 3a  Figure 3b 

 Valence between feedback conditions  Arousal between  feedback conditions 

 Note.  Estimated  marginal  means  (EMMs)  of  self-reported  valence(a)  and  arousal(b)  during  control-,  and 

 negative  feedback  condition  after  controlling  for  sex.  Error  bars  depict  standard  error  of  the  means 

 (SEMs), asterisks indicate significance levels. * indicates  p  < .05. *** indicates  p  < .001. 

 3.4.1.2. Physiological activity 

 Delta  IBI’s  (cardiac  interbeat  interval)  were  calculated  during  the  feedback  period  (6s) 

 after  a  trial  was  completed.  Considering  the  presence  of  non-positive  values  (cardiac 

 acceleration:  negative  delta’s),  an  LMM  with  the  formula  DeltaIBI  ~  Condition  *  IBI  no  +  (1|ID) 
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 was  fit  to  the  data.  The  LMM  showed  a  Condition  x  IBI  no  interaction  effect  χ2  (11,  N  =  73)  = 

 33.49,  p  <  .001  ,  showing  more  acceleration  in  heart  rate  during  observation  of  the  negative 

 feedback  than  the  control  feedback.  However,  as  our  main  focus  is  on  the  IBIs  following 

 feedback  exposure  rather  than  on  all  IBIs;  follow-up  pairwise  comparisons  were  executed 

 between  the  two  conditions  at  every  individual  IBI,  on  which  we  applied  FDR  (False  Discovery 

 Rate)  correction  (Benjamini  &  Hochberg,  1995).  We  observe  significant  effects  for  IBI  2  to  IBI  7 

 (Figure  4,  Table  1),  showing  that  heart  rate  acceleration  is  larger  during  exposure  to  negative 

 feedback as compared to control feedback from IBI  2  to IBI  7  (see Table 1). 

 Figure 4 

 Delta Interbeat intervals in response to feedback exposure between feedback conditions 

 Note.  Estimated  Marginal  Means  (EMMs)  for  delta  IBI’s  (in  ms,  referenced  to  IBI  -2  )  of  control-, 

 and  negative-feedback  trials,  with  IBI  0  being  IBI  closest  to  feedback  exposure  onset.  Error  bars  depict 

 the  standard  error  of  the  means  (SEMs),  asterisks  indicate  significance  levels.*  indicates  p  <  .05.  ** 

 indicates  p  < .01. *** indicates  p  < .001. 
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 Table 1 

 Individual contrasts at different IBIs between control-, and negative-feedback condition trials. 

 b  SE  z  p 

 IBI  0  .760  2.58  .295  .770 

 IBI  1  .393  2.58  .153  .879 

 IBI  2  5.381  2.58  2.089  .037 

 IBI  3  8.282  2.58  3.215  .001 

 IBI  4  8.181  2.58  3.176  .002 

 IBI  5  10.574  2.58  4.105  <.001 

 IBI  6  11.301  2.58  4.388  <.001 

 IBI  7  8.437  2.58  3.276  .001 

 IBI  8  4.356  2.58  1.691  .091 

 Note.  b  is  the  beta  coefficient,  SE  is  the  standard  error  of  the  difference,  z  is  the  z-ratio,  p  is  the  p-value. 

 P-values are FDR corrected. 

 3.4.2. Speech feature analysis 

 For  each  of  the  speech  features,  a  series  of  (G)LMM  (generalized  linear  mixed  models) 

 were  fitted  to  increase  the  likelihood  of  using  a  statistical  model  that  best  fits  the  underlying 

 distribution.  Model  selection  was  performed  using  the  AIC.  To  minimize  the  likelihood  of  Type  1 

 errors, FDR correction was applied over all p-values for the different speech features. 

 3.4.2.1. Harmonics-to-Noise Ratio (HNR) 

 The  distribution  for  HNR  was  best  represented  by  an  LMM  (AIC  =  765)  and  showed  a 

 significant  main  effect  for  the  feedback  condition  after  controlling  for  sex,  with  HNR  being 
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 significantly  higher  during  the  negative-,  versus  the  control-feedback  condition,  χ2  (1)  =  8.17,  b 

 = .127,  SE  = .0444,  z  = 2.858,  d  = .68,  p =  .005 (Figure  5a). 

 3.4.2.2. Shimmer 

 Shimmer  was  best  represented  by  a  GLMM  with  Gamma  distribution  and  identity-link 

 (AIC  =  -927)  and  showed  a  significant  main  effect  for  the  feedback  condition  after  controlling 

 for  sex,  with  shimmer  being  significantly  lower  during  the  negative-,  versus  the 

 control-feedback  condition,  χ2  (1)  =  8.30,  b  =  .019,  SE  =  .006,  z  =  2.881,  d  =  .68,  p  =  .004 

 (Figure 5b). 

 Figure 5a  Figure 5b 

 HNR between feedback conditions  Shimmer between feedback  conditions 

 Note.  Estimated  marginal  means  (EMMs)  of  HNR(a)  and  Shimmer(b)  during  control-,  and 

 negative  feedback  conditions  after  controlling  for  sex.  Error  bars  depict  standard  error  of  the  means 

 (SEMs), asterisks indicate significance levels. ** indicates  p  < .01. 

 3.4.2.3.Fundamental Frequency (F0) 

 F0  was  best  represented  by  a  GLMM  with  Gamma  distribution  and  identity-link  (AIC  = 

 961)  and  showed  a  significant  main  effect  for  the  feedback  condition  after  controlling  for  sex, 
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 with  F0  being  significantly  higher  during  the  negative-,  versus  the  control-feedback  condition, 

 χ2  (1) = 7.60,  b  = .171,  SE  = .062,  z  = 2.756,  d  =  .65,  p  .006 (Figure 6). 

 Figure 6 

 Fundamental Frequency (F0) between feedback conditions 

 Note.  Estimated  marginal  means  (EMMs)  of  Fundamental  Frequency  (F0)  during  control-,  and  negative 

 feedback  conditions  after  controlling  for  sex.  Error  bars  depict  standard  error  of  the  means  (SEMs), 

 asterisks indicate significance levels. ** indicates  p  < .01. 

 3.4.2.4. Jitter, voiced segments per second, mean voiced segment length 

 No  significant  effects  were  observed  for  either  jitter,  voiced  segments  per  second,  or 

 mean  voiced  length.  Jitter  was  fit  with  an  LMM  (AIC  =  -2725),  χ2  (1)  =  0.975,  p  =  .32.  Voiced 

 segments  per  second  were  fit  with  a  GLMM  with  Gamma  fit  and  identity  link  (AIC  =  20),  χ2  (1)  = 

 2.41,  p  =  .12.  Mean  voiced  segment  length  was  fit  with  a  GLMM  with  Gamma  fit  and  identity 

 link (AIC = -2002),  χ2  (1) = 3.25,  p  = .07. 
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 3.5. Discussion 

 In  this  study,  we  aimed  to  examine  the  effects  of  stress,  induced  by  a  highly  controlled 

 social  evaluative  threat  stressor,  on  different  key  speech  features  (fundamental  frequency;  F0, 

 harmonics-to-noise  ratio;  HNR,  jitter,  shimmer,  and  speech  rate).  Participants  performed  tasks 

 within  two  conditions,  one  with  control  feedback  and  one  with  negative  comparative  feedback, 

 that  shared  the  same  overall  design.  Each  feedback  condition  contained  three  subblocks  of 

 abstract  reasoning  puzzles  (i.e.,  Raven’s  matrices)  to  be  solved  under  time  pressure.  In  the  first 

 condition,  participants  were  told  that  they  were  being  compared  to  a  group  of  people  who  were 

 randomly  sampled  from  the  population  (average  individuals)  and  received  feedback  after  each 

 trial  that  indicated  that  they  were  performing  on  par  with  the  reference  group  (control  feedback 

 condition).  In  the  second  condition,  participants  were  told  that  they  were  being  compared  to 

 individuals  that  achieved  significant  academic  or  professional  success  (to  increase  the 

 credibility  of  a  sudden  drop  in  relative  performance)  and  received  feedback  after  each  trial, 

 indicating  that  they  were  performing  increasingly  worse  compared  to  the  comparison  group 

 throughout  each  subblock  (negative  feedback  condition).  During  each  condition,  participants 

 were  asked  at  three  moments  to  read  a  standardized  text  out  loud.  We  extracted  several  key 

 acoustic  features  from  these  fragments  to  gain  insight  into  the  effects  of  acute  (psychosocial) 

 stress  on  speech.  These  features  were  selected  based  on  previous  research  in  which  they  were 

 deemed  important  in  the  context  of  stress  (Giddens  et  al.,  2013;  Kappen  et  al.,  2022;  Van 

 Puyvelde  et  al.,  2018).  However,  this  study  is  the  first  to  use  a  within-participant  design  that 

 verifies  a  successful  stress  induction  using  both  self-report  and  physiological  measures  in  a 

 (non-actor)  sample.  We  verified  a  successful  stress  induction  based  on  decreased  self-reported 
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 valence  scores  and  increased  heart  rate  acceleration  during  the  negative  feedback  condition. 

 Increased  heart  rate  acceleration  during  negative  feedback  is  consistent  with  the  notion  of 

 increased  sympathetic  reactivity  due  to  stress  exposure  (Taelman  et  al.,  2009;  Vrijkotte  et  al., 

 2000).  However,  we  did  encounter  a  decrease  in  self-reported  arousal  during  the  negative 

 feedback  condition,  which  is  the  opposite  of  what  we  expected.  This  result  could  potentially  be 

 an  order  effect,  such  as  tiredness,  due  to  the  negative  feedback  condition  always  being 

 subsequent  to  the  control  condition.  Nonetheless,  we  conclude  a  successful  stress  induction 

 due  to  the  increased  heart  rate  acceleration  and  decreased  self-reported  valence  during  the 

 negative feedback condition. 

 We  observed  an  increase  of  F0  (fundamental  frequency;  pitch)  during  the  negative 

 feedback  condition  as  compared  to  the  control  feedback  condition.  This  was  expected  since 

 increases  in  F0  in  response  to  an  acute  (psychosocial)  stressor  are  commonly  reported  in  the 

 literature  (Giddens  et  al.,  2013;  Van  Puyvelde  et  al.,  2018).  Furthermore,  we  observed  a 

 significant  increase  in  HNR  (harmonics-to-noise  ratio;  added  noise  in  the  voice)  in  the  negative 

 feedback  condition  as  compared  to  the  control  feedback  condition.  In  the  past,  no  clear  results 

 have  been  found  with  regard  to  this  parameter,  as  it  has  shown  to  decrease  in  the  context  of 

 physical  stress  tasks  (e.g.,  workout)  and  has  shown  mixed  results  in  the  context  of  cognitive 

 load/psychological  stress  (Giddens  et  al.,  2013;  Kirschbaum  et  al.,  1994;  Godin  et  al.,  2012; 

 Godin  &  Hansen,  2015).  We  also  found  a  decrease  in  shimmer  (vocal  intensity  variation)  during 

 the  negative  as  compared  to  control  feedback.  The  effects  of  stress  on  shimmer  are  less 

 pronounced,  where  some  studies  indicate  no  changes  and  others  a  decrease  in  shimmer  after 

 different  stress  induction  procedures  (Giddens  et  al.,  2013;  Mendoza  &  Carballo,  1998). 

 Nonetheless,  we  found  a  clear  decrease  in  shimmer  during  stress,  which  make  sense  due  to  its 
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 vowel-level  relationship  with  heart  rate,  a  central  component  in  stress  reactivity  (Giddens  et  al., 

 2013;  Orlikoff,  1990).  Yet,  future  research  should  revisit  the  direct,  trial-based  relationship 

 between shimmer heart rate. 

 No  effects  have  been  found  for  jitter  (vocal  frequency  variation).  However,  as  proposed 

 by  Van  Puyvelde  et  al.  (2018),  acoustic  speech  parameters  should  not  only  be  considered  in 

 their  own  regard  but  also  as  combined  patterns  of  multiple  speech  parameters  that  may 

 respond  in  a  simultaneous  manner.  HNR  has  been  demonstrated  to  be  more  sensitive  to  subtle 

 differences  in  vocal  function  than  jitter  (Awan  &  Frenkel,  1994;  Giddens  et  al.,  2013),  and  former 

 network  analysis  has  shown  a  strong  negative  relationship  between  changes  in  jitter  and 

 changes  in  HNR  after  psychosocial  stress  induction  (Kappen  et  al.,  2022)  .  Moreover,  jitter  is 

 mainly  affected  due  to  a  lack  of  control  of  the  vocal  fold  vibration  (Teixeira  et  al.,  2013).  The 

 lack  of  a  significant  difference  could  be  explained  by  the  nature  of  the  speech  fragments  that 

 we  analyzed.  It  could  be  argued  that  when  people  read  a  text  out  loud,  as  opposed  to  speaking 

 freely,  they  could  be  using  a  ‘reading  voice’  that  minimizes  these  types  of  effects  due  to  read 

 speech  being  significantly  different  from  spontaneous  speech,  both  acoustically  and 

 linguistically  (Nakamura  et  al.,  2008).  A  similar  argument  could  be  made  to  explain  a  lack  of 

 effect  found  for  the  speech  rate,  as  when  someone  reads  out  loud,  one  of  their  focuses  is 

 understandability  for  potential  listeners  (Nakamura  et  al.,  2008).  In  addition,  since  the  text  and 

 one’s  ability  to  process  this  both  influence  a  minimal  and  maximum  speech  rate,  it  can  be 

 expected that this measure is limited by the speech recording paradigm. 

 The  current  results  are  generated  in  a  well-controlled  experimental  setting,  using  a 

 stressor  with  a  control  condition  that  also  contains  time  pressure.  Therefore,  the  presented 

 results  are  indicative  of  how  speech  as  a  biomarker  reacts  to  actual  stress  as  induced  by 
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 negative  evaluation,  rather  than  cognitive  load  or  time  pressure.  However,  it  should  be  noted 

 that  the  current  study  was  limited  in  its  design  as  the  stress  condition  was  always  preceded  by 

 the  control  condition  rather  than  being  randomized.  We  chose  to  use  this  design  because  it 

 would  enable  us  to  integrate  an  active  control  condition  which  also  contained  cognitive  load 

 and  time  pressure  just  as  the  stress  condition,  isolating  the  results  to  just  the  experience  of 

 negative  evaluation.  Counterbalancing  the  order  of  the  control  and  stress  condition  would  have 

 only  been  possible  by  either  severely  lengthening  the  design  or  by  testing  on  multiple  days, 

 due  to  the  duration  of  the  recovery  phase  after  a  stressor.  This  limitation  could  introduce  order 

 effects,  such  as  a  fatigue  or  repetition  effect,  that  confound  our  presented  results. 

 Nevertheless,  considering  our  results  are  in  line  with  previous  research,  we  believe  that  if  this 

 effect  influenced  our  results,  they  potentially  reduced  the  observed  effect  sizes.  Supplemental 

 analyses indeed show no effect of repetition on the speech features (  https://osf.io/gq7aw  ). 

 The  current  study  evaluated  several  key  acoustic  speech  features  in  an  isolated 

 situation;  by  using  read-out-loud  speech,  potential  interference  from  specific  word  choices  was 

 eliminated.  However,  to  work  towards  a  real-world  application  for  speech  as  a  biomarker  for 

 stress,  features  in  spontaneous  speech  fragments  should  also  be  tested.  Future  studies  should 

 therefore  move  towards  a  speech  collection  paradigm  that  enables  participants  to  speak  freely. 

 However,  certain  considerations  should  be  made  here,  since  completely  free  speech  would 

 introduce  a  number  of  noise  factors  that  could  make  the  comparison  of  certain  acoustic 

 features  between  different  conditions  close  to  impossible.  In  order  to  more  closely  simulate  free 

 speech  in  a  controlled  setting,  future  research  should  focus  on  using  a  speech  collection 

 paradigm  in  which  participants  are  semi-spontaneous  in  their  speech  by,  for  example, 

 controlling  the  topics  they  can  talk  about,  whilst  limiting  any  extra  cognitive  load  of  active 
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 recall.  Shifting  towards  free  speech  should  give  us  more  insight  into  the  robustness  of  these 

 acoustic  speech  features  in  more  spontaneous  settings,  and  will  additionally  enable  us  to 

 investigate  other  linguistic  features  of  speech  in  the  context  of  stress,  such  as  syntax,  prosody, 

 and  semantics.  Combining  semantics  with  syntax  and  acoustic  features  will  indicate  the 

 potential  of  real-life  applications  for  stress  monitoring  using  speech  signals.  Moreover,  we  invite 

 others to use our data and test other features that they deem promising (  https://osf.io/78g9s/  ). 

 To  conclude,  we  collected  repeated  read-out-loud  speech  fragments  of  participants  in  a 

 social  evaluative  threat  stress  induction  paradigm  which  we  validated  through  self-reports  and 

 psychophysiological  responses.  We  were  able  to  give  valid  and  reliable  results  for  the  effects  of 

 psychosocial  stress  on  F0,  HNR,  and  shimmer,  and  were  not  able  to  find  effects  on  jitter  and 

 speech  rate.  Therefore,  we  conclude  that  changes  in  F0,  HNR,  and  shimmer  are  shown  to  be 

 present  in  speech  after  stress  irrespective  of  a  person’s  language  construction  capability.  As 

 such,  this  study  shows  that  speech  is  a  promising  biomarker  for  stress,  on  top  of  it  being 

 affordable,  non-intrusive,  and  easy  to  collect  and  therefore  easy  to  implement  in  everyday 

 settings.  Future  studies  should  focus  on  replicating  our  findings  to  test  the  robustness  of  the 

 effect  of  stress  on  these  acoustic  speech  features.  In  addition,  different  speech  production 

 paradigms  should  be  developed  and  tested  in  order  to  move  towards  more  spontaneous 

 speech  and  test  the  external  validity  in  more  naturalistic  settings.  Lastly,  this  would  also  enable 

 us  to  increase  the  range  of  speech  features  that  can  be  informative  in  the  context  of  stress, 

 such as semantics and syntax. 
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 3.7.3. Supplemental Materials 

 All  data  and  corresponding  codes  are  openly  available  through  https://osf.io/78g9s/  .  Code 

 works  out  of  the  box  with  instructions  found  in  the  corresponding  README.md  in  OSF 

 directory. 

 Exclusion criteria: 

 - Other than native Dutch speakers 
 - Left-handed 
 - Born before 1970 
 - Psychology student 
 - Personal or family history of epilepsy 
 - Recent neurosurgical procedures 
 - Pacemaker or other electronic implants 
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 - Inner ear prosthesis 
 - Metal objects or magnetic objects in the brain or around the head (only removable earrings 
 & piercings are allowed) 
 - Pregnancy 
 - Unstable medical condition 
 - A current depressive episode 
 - Other psychiatric disorders 
 - Skin disorder at the level of the head 
 - Current addiction 
 - Current substance abuse 
 - Current use of psychotropic medication 
 - Eye disease(s) 
 - Heart, respiratory, or neurological problems 
 - Did not drink coffee or smoke 2 hours before the start of the experiment 
 - Dreadlocks 

 Response Block: 

 First:  Read out loud text “Marloes”: 

 “Papa  en  Marloes  staan  op  het  station.  Ze  wachten  op  de  trein.  Eerst  hebben  ze  een  kaartje 

 gekocht.  Er  stond  een  hele  lange  rij,  dus  dat  duurde  wel  even.  Nu  wachten  ze  tot  de  trein  eraan 

 komt.  Het  is  al  vijf  over  drie,  dus  het  duurt  nog  vier  minuten.  Er  staan  nog  veel  meer  mensen  te 

 wachten. Marloes kijkt naar links, in de verte ziet ze de trein al aankomen.” 

 From: van de Weijer and Slis (1991) 

 Translation: 

 “Papa  and  Marloes  are  at  the  station.  They  are  waiting  for  the  train.  First,  they  bought  a  ticket. 

 There  was  a  very  long  queue,  so  it  took  a  while.  Now  they  wait  for  the  train  to  arrive.  It's  already 
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 five  past  three,  so  it's  still  four  minutes.  Many  more  people  are  waiting.  Marloes  looks  to  the 

 left, she sees the train coming in the distance.” 

 Second:  Answer Self-Assessment Manikins (SAMs) 

 Self-Assessment Manikin (SAM) Scales (Bradley & Lang, 1994) 

 Third:  Read  out  loud  and  answer  Brief  State  Rumination  Index  (BSRI;  Marchetti,  Mor,  Chiorri  & 

 Koster, 2018) 
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 Supplemental Figure 1. 

 Boxplots  indicating  time  passed  since  feedback  onset  for  each  relative  delta  IBI.  Horizontal 

 bars  indicate  the  lower  and  upper  limit,  box  borders  indicate  the  25th  and  75th  percentile,  and 

 lines  in  the  boxplot  indicate  the  median.  A  horizontal  dotted  line  indicates  the  6  seconds  mark: 

 total  feedback  exposure  time.  This  shows  that  75%  of  the  trials  had  passed  the  6  seconds  of 

 feedback exposure at IBI8. 
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 Supplemental Figure 2. 

 Performance  feedback  as  lines  in  the  colored  feedback  bar.  Blue  dots  stand  for  ‘group 

 performance’,  and  orange  dots  stand  for  ‘your  performance’.  Y-axis  shows  time  over  the 

 condition  (left  two  plots  are  control  condition;  right  two  plots  are  negative  condition).  Vertical 

 dashed lines show separations for the subblocks (where a response block was executed). 
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 4.1. Abstract 

 This  paper  introduces  the  Ghent  Semi-spontaneous  Speech  Paradigm  (GSSP),  a  new 

 method  for  acquiring  unscripted  speech  data  for  affective-behavioral  research  in  both 

 experimental  and  real-world  settings  through  the  description  of  peer-rated  pictures  with  a 

 consistent  affective  load.  The  GSSP  was  designed  to  meet  five  criteria;  (1)  allowing  flexible 

 speech  acquisition  durations,  (2)  providing  a  straightforward  and  non-interfering  task,  (3)  allow 

 for  experimental  control,  (4)  favoring  semi-spontaneous  speech  for  its  prosodic  richness,  and 

 (5)  require  minimal  human  interference  to  enable  scalability.  The  validity  of  the  GSSP  was 

 evaluated  through  an  online  task,  in  which  this  paradigm  was  implemented  alongside  a 

 fixed-text  read-aloud  task.  The  results  indicate  that  participants  were  able  to  describe  images 

 with  an  adequate  duration,  and  acoustic  analysis  demonstrated  a  trend  for  most  features  in  line 

 with  the  targeted  speech  styles  (i.e,  unscripted  spontaneous  speech  versus  scripted 

 read-aloud  speech).  A  speech  style  classification  model  using  acoustic  features  achieved  a 

 balanced  accuracy  of  83%  on  within-dataset  validation,  indicating  separability  between  the 

 GSSP  and  read-aloud  speech  task.  Furthermore,  when  validating  this  model  on  an  external 

 dataset  that  contains  interview  and  read-aloud  speech,  a  balanced  accuracy  score  of  70%  is 

 obtained,  indicating  an  acoustic  correspondence  between  the  GSSP  speech  and  spontaneous 

 interviewee  speech.  The  GSSP  is  of  special  interest  for  behavioral  and  speech  researchers 

 looking  to  capture  spontaneous  speech,  both  in  longitudinal  ambulatory  behavioral  studies  and 

 laboratory  studies.  To  facilitate  future  research  on  speech  styles,  acoustics,  and  affective 

 states,  the  task  implementation  code,  the  collected  dataset,  and  analysis  notebooks  are 

 available. 
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 4.2. Introduction 

 Over  the  last  decades,  the  human  voice  and  speech  have  been  increasingly  studied  in 

 relation  to,  amongst  others,  psychiatric  disorders  (e.g.,  depression,  schizophrenia),  and  current 

 psychological  (e.g.,  stress)  or  physiological  (e.g.,  sleepiness)  states  (Fagherazzi  et  al.,  2021;  Van 

 Puyvelde  et  al.,  2018,  Martin  et  al.,  2022).  To  date,  the  primary  form  of  speech  data  used  in 

 affective-behavioral  research  in  an  experimental  setting  remains  scripted  read-aloud  speech 

 gathered  in  highly  controlled  laboratory  environments  (Van  Puyvelde  et  al.,  2018;  Wagner  et  al., 

 2015).  Scripted  lab  speech  more  conveniently  allows  for  systematic  experimental  control,  thus 

 limiting  the  implicit  inclusion  of  unwanted  latent  variables.  As  a  result,  a  smaller  sample  size  is 

 sufficient  to  capture  all  degrees  of  freedom  compared  to  unscripted  speech  gathered  in  less 

 controlled  environments  (Xu,  2010a).  However,  acoustic  properties  found  in  one  speech  style 

 can  be  style-specific,  which  limits  the  explanatory  power  of  the  speech  data  to  other  settings 

 (e.g.,  real-world).  Therefore,  a  promising  research  direction  is  to  investigate  the  influence  of 

 speech  acquisition  paradigms  on  both  production  and  perception  (Wagner  et  al.,  2015).  On  top 

 of  this,  the  scalability  of  speech  acquisition  methods  should  be  considered,  given  that  the 

 long-term  objective  of  affective  sensing  experiments  is  to  facilitate  wide-spread,  real-world 

 affect  monitoring  (Slavich  et  al.,  2019).  To  this  end,  it  is  necessary  to  investigate  speech 

 acquisition  approaches  that  can  be  used  in  real-life  scenarios  but  still  allow  for  sufficient 

 experimental control. 

 Prior  work  has  indicated  that  vocal  responses  to  affective  loads  may  be  as  individual 

 and  unique  as  the  voice  itself,  requiring  more  isolated  studies  that  control  for  inter-individual 

 differences  (Giddens  et  al.,  2013;  Van  Puyvelde  et  al.,  2018).  In  order  to  address  this  issue, 
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 within-subject  designs  have  been  proposed,  which  allow  for  the  collection  of  both  baseline  and 

 affective  data  (Kappen,  Hoorelbeke,  et  al.,  2022;  Kappen,  Van  Der  Donckt,  et  al.,  2022). 

 However,  in  these  works,  the  acoustic  analysis  was  conducted  on  read-aloud  speech  with  a 

 fixed  text,  which  limits  the  generalizability  of  conclusions  to  the  more  naturalistic  and 

 spontaneous  speech  encountered  in  real-life  settings.  Baird  and  colleagues  (2019)  tackled  this 

 within-participant  challenge  by  using  cortisol  concentration  as  a  target  to  examine  acoustic 

 features  associated  with  stress.  Their  spontaneous  speech  samples  were  acquired  using  the 

 Trier  Social  Stress  Tests  (TSST;  Kirschbaum  et  al.,  1993).  In  more  recent  work,  Baird  and 

 colleagues  (2021)  assessed  the  generalizability  of  spontaneous  speech  correlates  for  stress  via 

 cortisol,  heart  rate,  and  respiration,  by  using  three  TSST  corpora.  The  results  show  an 

 increasing  trend  towards  generalization  and  explanation  power.  However,  these  results  are  still 

 limited,  as  the  TSST  only  produces  stressed  speech  under  psychosocial  load  (i.e.,  during  the 

 interview), without consensus on the acquisition of baseline speech. 

 Furthermore,  It  has  been  demonstrated  that  affective  states  can  influence  decisions, 

 working  memory,  and  information  retrieval  (Mikels  &  Reuter-Lorenz,  2019;  Weerda  et  al.,  2010). 

 Therefore,  unscripted  speech,  which  requires  larger  planning  units  such  as  sentences,  clauses, 

 and  temporal  structure,  can  lead  to  changes  in  wording,  grammar,  and  timing  of  speech  under 

 these  affective  states  (Fromkin,  1973;  Paulmann  et  al.,  2016;  Slavich  et  al.,  2019).  These 

 prosodic  markers  are  less  pronounced  in  scripted  speech,  as  fewer  planning  units  are  needed 

 (Barik,  1977;  Xu,  2010a).  However,  spontaneous  speech  rarely  allows  for  controlling  the  factors 

 that  contribute  to  the  phenomena  of  interest  (Xu,  2010a).  To  address  this,  more  controlled 

 variants  of  unscripted  speech  paradigms  are  employed,  such  as  guided  interviews  and  picture 

 description  tasks.  For  example,  language  disturbances,  at  both  the  acoustic-prosodic  and 
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 content  level,  have  been  shown  to  be  promising  markers  for  psychiatric  diseases  such  as 

 schizophrenia-spectrum  disorders  (de  Boer  et  al.,  2020).  As  a  result,  schizophrenia  researchers 

 have  employed  guided  interview  protocols  as  a  means  of  acquiring  unscripted  speech  (Voppel 

 et  al.,  2021).  Recent  work  in  this  area  has  proposed  more  continuous  disorder  follow-up,  for 

 which  such  labor-intensive  interviews  may  not  be  an  ideal  match  (de  Boer  et  al.,  2021).  The  use 

 of  picture  description  tasks,  i.e.,  providing  an  image  stimuli  to  a  participant  with  the  objective  of 

 describing  the  image  content  out  loud,  has  a  successful  track  record  in  the  field  of  neurology 

 for  aiding  in  the  diagnosis  of  cognitive  disorders  such  as  aphasia  and  Alzheimer’s  disease 

 (Goodglass  et  al.,  2001;  Mueller  et  al.,  2018).  Picture  description  paradigms  are  here  preferred 

 over  spontaneous  speech,  as  the  controlled  and  monological  types  of  content  are  easier  to 

 obtain  and  analyze  in  clinical  practice  (Lind  et  al.,  2009).  Furthermore,  by  letting  participants 

 describe  stimuli  with  consistent  emotional  loads,  repeated  measures  are  possible  with  little 

 change in affect (Helton & Russell, 2011; Kern et al., 2005). 

 Given  the  above  observations,  we  established  a  requirement  list  for  a  speech 

 acquisition  task  that  would  be  useful  for  both  experimental  research  and  real-world 

 applicability.  The  task  should  (1)  allow  for  flexible  speech  acquisition  durations,  ensuring  that  it 

 can  easily  be  incorporated  into  existing  paradigms.  For  example,  enabling  the  inclusion  of  a 

 task  at  multiple  (time-constrained)  moments  within  an  experiment  allows  for  within-participant 

 analysis.  Additionally,  the  task  should  be  (2)  straightforward  and  non-interfering,  ensuring  that 

 the  resulting  speech  is  not  affected  by  the  cognitive-emotional  load  of  the  acquisition  method 

 itself,  but  only  by  prior  effects  induced  by  the  experimental  paradigm.  The  method  should  be 

 (3)  controllable,  as  experimental  control  reduces  the  large  number  of  samples  that  would  be 

 needed  elsewhere  to  marginalize  out  latent  factors  (Xu,  2010b).  Furthermore,  the  method 
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 should  (4)  stimulate  participants  towards  spontaneous  speech,  as  the  richness  in  prosody, 

 semantics,  and  content  has  already  been  proven  to  be  useful  to  derive  markers  in  affective  and 

 cognitive  research  (Christodoulides,  2016).  Unscripted  speech  should  also  be  more 

 generalizable  to  everyday  speech,  enabling  the  translation  of  results  to  real-world  settings  and 

 applications.  Finally,  the  speech  acquisition  method  should  be  (5)  scalable,  by  requiring 

 minimal  human  interference  during  acquisition  to  allow  for  usability  in  both  longitudinal 

 ambulatory studies with repeated measures and studies at scale. 

 This  paper  aims  to  make  a  significant  step  towards  the  application  of  lab  results  in  a 

 real-world  setting  by  introducing  the  Ghent  Semi-spontaneous  Speech  Paradigm  (GSSP)  ;  a 

 controllable  and  ecologically  valid  picture  description  paradigm  that  complies  with  the  above 

 requirements.  By  having  participants  describe  an  image  depicting  a  neutral  social  setting  that 

 is  not  complex,  and  they  have  not  seen  before,  there  will  be  no  cognitive  interference  of  active 

 recall.  Whereas  speech  analysis  for  (psychosocial)  stress  and  other  psychological  states  is 

 increasingly  gaining  traction,  we  propose  these  stimuli  to  be  congruent  with  psychosocial 

 (stress)  paradigms.  That  is,  offering  stimuli  that  would  minimally  interfere  with  elicited 

 psychophysiological  states  of  the  experimental  paradigm  in  order  to  (1)  not  risk  the  disruption 

 of  observed  effects  in  other  constructs  (e.g.,  physiological  reactions,  rumination,  etc.)  due  to 

 mind  wandering  and  (2)  have  the  collected  speech  closely  resemble  the  active  mental  state 

 experienced by participants due to the experimental paradigm. 

 The  selected  images  are  empirically  sampled  from  the  PiSCES  (Teh  et  al.,  2018)  and 

 Radboud  (Langner  et  al.,  2010)  datasets,  based  on  peer-rated  neutral  content.  In  order  to 

 minimize  additional  cognitive  task  load  and  biases,  we  used  proper  habituation  instructions 

 and  images  with  a  consistent  neutral  emotional  load.  To  the  best  of  our  knowledge,  this  is  the 
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 first  work  proposing  a  picture  description  task  for  applied/real-world  acoustic  analysis  of 

 affective-behavioral states. 

 To summarize, the contributions of this paper are threefold; 

 ●  We  propose  the  Ghent  Semi-spontaneous  Speech  Paradigm  (GSSP),  a  novel  speech 

 acquisition  paradigm  using  a  picture  description  task  for  affective-behavioral  research. 

 The  GSSP  enables  near-effortless,  semi-controlled  acquisition  of  unscripted  speech 

 data in both experimental and longitudinal real-life settings. 

 ●  To  assess  the  validity  of  the  GSSP  regarding  speech  style,  utterance  duration,  and 

 image  subset  consistency,  a  study  was  performed  using  a  web  application.  The 

 analysis  of  the  web  application  data  indicated  that  participants  are  able  to  describe  the 

 images  with  an  adequate  duration,  and  acoustic  analysis  hinted  that  acoustic  properties 

 of the GSSP correspond to those of spontaneous speech. 

 ●  In  order  to  facilitate  the  reproducibility  of  the  research  outcomes,  the  materials  utilized 

 in  the  study  have  been  made  openly  accessible  under  a  research-friendly  license.  The 

 analysis  scripts  and  web-app  code  are  available  on  GitHub  1  ,  while  the  dataset  and 

 instruction videos can be accessed through Kaggle datasets  2  . 

 4.3. Methods 

 In  order  to  evaluate  three  key  factors  pertaining  to  the  GSSP,  namely  (1)  the 

 participant's  ability  to  engage  in  prolonged  discourse,  (2)  the  acoustical  similarity  between  the 

 gathered  GSSP  speech  and  spontaneous  speech,  and  (3)  the  consistency  of  the  initially 

 2  https://www.kaggle.com/datasets/jonvdrdo/gssp-web-app-data 

 1  https://github.com/predict-idlab/gssp_analysis  , 
 https://github.com/predict-idlab/gssp_web_app 
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 selected  image  subset,  a  web  application  was  developed  which  incorporates  the  GSSP  among 

 a  standardized  read-aloud  task.  The  following  sections  describe  the  web  app  design  and  the 

 GSSP  procedure,  followed  by  a  specification  of  the  participant  selection  procedure  and  the 

 speech data processing. 

 4.3.1. Web app and procedure 

 Figure 1 

 Flowchart of the web application experiment. 

 Note. This results in 7 Marloes, 15 Radboud, and 15 Pisces Utterances per participant. 

 The  web  application  was  developed  in  Python  using  the  Flask  framework  (Grinberg, 

 2018).  Screenshots  and  implementation  details  are  found  in  Supplemental  Material  S1  and  on 

 GitHub  3  .  As  depicted  in  Figure  1,  the  experiment  was  divided  into  five  blocks,  with  the  first 

 block  consisting  of  three  consecutive  web  pages.  The  first  page,  labeled  “Welcome”  (S1.1 

 Figure  1),  provided  a  general  overview  of  the  study’s  purpose,  i.e.,  validating  the  usability  of  an 

 image  set  for  experimental  speech  research.  The  second  page,  labeled  "Introduction”  (S1.2 

 Figure  2),  was  used  to  acquire  demographics  (i.e.,  age,  sex,  recording  material,  highest 

 obtained  degree)  together  with  the  approval  of  the  informed  consent.  The  introduction  page 

 also  provided  an  overview  of  the  general  guidelines  for  the  task.  In  particular,  it  emphasized  the 

 importance  of  performing  the  task  on  a  computer  in  a  quiet  and  distraction-free  environment. 

 The  complete  list  of  (translated)  guidelines  can  be  found  in  S1.2.  The  third  page,  labeled  “Task 

 3  https://github.com/predict-idlab/gssp_web_app 
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 Instruction”  (S1.3  Figure  3-5),  provided  detailed  instructions  for  the  components  of  this  study, 

 i.e.,  a  5-minute  resting  block  (S1.4)  to  establish  a  neutral  baseline  state,  followed  by  the  speech 

 acquisition  tasks  through  scripted  read  speech  (i.e.,  “Marloes”)  and  the  GSSP.  The  task 

 instruction  page  also  provided  three  videos,  one  of  which  demonstrated  the  procedure  for  the 

 reading  task,  while  the  other  two  illustrated  the  GSSP  its  picture  description  process,  using  an 

 image  from  both  the  PiSCES  and  Radboud  dataset,  which  were  not  utilized  as  stimuli  in  the 

 study.  In  addition,  the  instruction  page  presented  the  read-out-loud  (“Marloes”)  text  and 

 participants  were  instructed  to  read  the  text  out  loud.  This  reading  exercise,  together  with  the 

 demonstration  videos,  aimed  to  reduce  novelty  effects  for  both  the  GSSP  and  reading  task 

 (Davidson  &  Smith,  1991;  Weierich  et  al.,  2010;  Zuckerman,  1990).  The  study  requested 

 participants  to  provide  a  description  of  each  image  for  a  minimum  of  30  seconds,  but  no 

 explicit  instruction  was  given  to  adhere  to  this  duration,  nor  was  the  length  of  the  speech 

 recording  indicated  to  the  subjects.  Finally,  as  a  speech  quality  control  procedure,  participants 

 had  to  record  and  playback  a  speech  sample,  and  were  only  permitted  to  proceed  to  the 

 resting block after this microphone assessment was conducted. 

 The  resting  block  consisted  of  a  blank  page  featuring  the  text:  “  Close  your  eyes  and  try 

 to  focus  on  your  breathing.  You  will  hear  a  sound  when  the  resting  block  is  over  ”  (translated). 

 This  step  aimed  to  bring  the  participants  to  a  neutral  baseline  state  and  is  in  alignment  with 

 (Kappen, Hoorelbeke, et al., 2022; Kappen, Van Der Donckt, et al., 2022). 

 Participants  completed  six  speech  cycles,  each  of  which  began  with  one  read-out-loud 

 text, followed by GSSP trials, as depicted by Figure 1. 
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 4.3.1.1. Read-out-loud text “Marloes” 

 To  acquire  scripted  speech  fragments,  participants  were  instructed  to  read  aloud  a 

 standardized  text  of  five  sentences.  The  text,  commonly  known  as  the  “Marloes”  text,  is  widely 

 used  in  Dutch  speech  therapy  due  to  its  phonetic  balance  (Van  de  Weijer  &  Slis,  1991;  full  text 

 provided  in  S1.5).  As  depicted  in  the  speech  acquisition  flow  of  Figure  2,  the  “Marloes”  text 

 only  became  visible  (in  frame  B)  after  the  participant  initiated  the  task  by  clicking  the  start 

 button,  which  should  limit  the  variability  in  preparation  time.  Once  the  segment  has  been  read 

 out  loud,  participants  could  proceed  to  a  new  page  by  clicking  the  stop  button.  On  this  page, 

 two  sliders  were  presented,  which  participants  adjusted  to  indicate  their  level  arousal  and 

 valence experienced during the speech task (Figure 2). 

 Figure 2 

 Trial flow chart of the web app speech acquisition task 

 Note.  Trial flow of the web app speech acquisition  task with the pages translated to English. 

 First, an empty page (a) is displayed with an enabled start button and a disabled stop button. When the 

 participant clicks the start button, (b) the audio recording begins, the stop button will be enabled. The 
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 stimulus in the form of an image (or text for the read-aloud task) will be presented. After the participant 

 completes the stimulus speech acquisition task, he/she or they click on the stop button, triggering the 

 redirection to (c), where the participant will report their experienced arousal and valence values. 

 4.3.1.2. GSSP picture description speech 

 The  unscripted  speech  fragments  were  collected  in  accordance  with  the  read-aloud 

 task.  In  order  to  limit  the  variability  of  image  description  preparation  time,  all  stimuli  were 

 presented  to  the  participants  at  the  beginning  of  the  recording  upon  clicking  the  start  button. 

 This  approach  ensured  a  degree  of  uniformity  among  participants.  The  order  of  the  presented 

 images  was  randomized,  alternating  between  pictures  from  the  PiSCES  and  Radboud 

 databases.  The  first  image  shown  was  drawn  from  the  PiSCES  subset,  followed  by  an  image 

 from  the  Radboud  set,  and  so  on.  Each  cycle  consisted  of  a  total  of  5  pictures,  resulting  in  a 

 total  of  15  images  from  both  the  PiSCES  and  Radboud  databases  (as  shown  in  Figure  1).  To 

 ensure  optimal  audio  quality,  speech  data  was  stored  within  the  participant’s  browser  session 

 using  the  Recorderjs  JavaScript  tool  (Matt,  2016).  After  utterance  completion,  the  audio  data 

 was  converted  into  a  16  bit  PCM  mono  WAV  file  and  sent  to  a  secure  server,  along  with  the 

 experienced arousal and valence score. 

 The  Radboud  Faces  Database  provides  a  set  of  stimuli  including  both  adult  and 

 children's  faces  that  have  been  parametrically  varied  with  respect  to  displayed  expressions, 

 gaze  direction,  and  head  orientation  (Langner  et  al.,  2010).  These  stimuli  were  evaluated  based 

 on  the  facial  expression,  valence,  and  attractiveness.  To  conduct  the  study,  the  GSSP  utilizes  a 

 subset  of  the  neutral  expression,  front-facing  adult  images  (7  males,  8  females),  which  were 
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 selected  based  on  their  mean  valence  scores,  to  minimize  the  potential  for  inducing  emotional 

 responses in respondents. The used image subset is depicted in Supplemental S1.6. Figure 8. 

 Similarly,  the  PiSCES  database  is  a  collection  of  203  black-and-white  line  drawings  of 

 individuals  in  social  settings  (Teh  et  al.,  2018).  These  stimuli  were  evaluated  based  on 

 emotional  valence,  intensity,  and  social  engagement.  To  control  for  emotional  responses,  a 

 subset  of  15  images  with  neutral  valence  ratings  and  high  social  engagement  scores  were 

 selected  from  this  database  for  use  in  the  study.  The  images  are  illustrated  in  Supplemental 

 S1.6. Figure 7  . 

 4.3.1.3. Drinking break 

 To  mitigate  vocal  fatigue,  participants  were  instructed  to  take  a  sip  of  water  after  every  9 

 utterances (Welham & Maclagan, 2003). 

 4.3.2. Participants 

 The  data  was  collected  in  two  waves.  First,  the  research  groups’  networks  were 

 leveraged  by  distributing  the  study  via  social  network  sites.  Second,  the  Prolific  platform  (Palan 

 &  Schitter,  2018)  was  utilized  to  gain  an  adequate  number  of  participants.  This  resulted  in  a 

 convenience  sample  of  89  participants  (45  women,  43  men,  1  other)  with  an  average  age  of 

 27.54  (  SD  =  6.63).  The  study  only  included  Dutch-speaking  participants  residing  in  Belgium  or 

 the  Netherlands  whose  native  language  is  Dutch.  On  average,  participants  required  one  hour  to 

 complete the study. 
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 4.3.3. Data processing 

 The  audio  data  parsing  and  analysis  were  carried  out  in  Python  3.8.13  and  statistical 

 analyses  of  the  valence-arousal  scores  were  performed  using  R4.1.1.  For  detailed  version 

 information of the utilized libraries, we refer to the GitHub repository  4  . 

 Figure 3 

 Audio  data processing flowchart. 

 4.3.3.1. Audio data processing 

 The  audio  data  processing  workflow  is  depicted  in  Figure  3.  The  first  step  is  to  acquire 

 the  input  samples  (Input  step),  which  are  then  converted  (Transform  step)  to  16kHz  mono 

 audio  with  32-bit  float  precision.  Due  to  technical  issues,  some  recordings  were  not  saved 

 properly,  resulting  in  empty  audio-files  (24  in  total)  that  are  excluded  from  further  analysis 

 during  the  Transform  step.  The  non-empty  transformed  outputs  are  then  saved  for  further 

 processing  in  the  Analyze  and  Parse  steps.  Following  the  Transformation  step,  a 

 participant-level  manual  inspection  is  carried  out  to  assess  the  audio  data  quality  (Analyze 

 step).  The  inspection  process  involves  utilizing  customized  visualizations,  as  illustrated  in 

 Figure  4  and  S2.  Figure  9,  to  assist  in  the  analysis  process.  The  outcome  of  this  analysis  is  a 

 4  https://github.com/predict-idlab/gssp_analysis 
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 manual  inspection  sheet,  which  is  used  to  exclude  participants  with  inadequate  audio  quality. 

 Lastly,  a  parsing  step  is  performed  on  the  transformed  audio  for  participants  whose  audio 

 quality  was  deemed  sufficient.  This  parsing  step  employs  a  Voice  Activity  Detection  (VAD) 

 model  (  Speechbrain/Vad-Crdnn-Libriparty  ·  Hugging  Face  ,  n.d.)  from  the  SpeechBrain  toolkit 

 (Ravanelli  et  al.,  2021)  to  detect  speech  segments.  The  outer  bounds  of  the  first  and  last 

 speech  segments  are  padded  with  a  margin  of  0.25  seconds  before  slicing.  The  red  shaded 

 regions  in  Figure  4  illustrates  the  regions  that  are  omitted.  As  such,  each  VAD-sliced  segment 

 consists  of  speech  data  that  starts  and  ends  at  the  same  relative  time.  This  approach  allows  us 

 to  make  fair  comparisons  between  fixed  duration  excerpts  (relative  from  VAD-slice  beginning  or 

 end).  Supplemental  S2.  further  details  the  visualizations  that  are  utilized  during  the  analyze 

 step. 

 Figure 4 

 VAD slicing with a 0.25s margin for the first and last voiced segment. 

 Note.  The  first  voiced  regions  occur  +/-  2  seconds  after  the  participant  pressed  the  “start”  button.  The 

 slicing  ensures  that  each  participant's  first/last  voiced  segment  start/end  at  the  same  time,  allowing  to 

 make fair comparisons on fixed-duration excerpts relative to the VAD-slice beginning or end. 

 4.3.3.2. Acoustic Speech parameter extraction 

 The  final  stage  of  the  parsing  step  entails  the  extraction  of  speech  parameters.  To 

 control  for  the  effects  of  file  duration  on  acoustic  parameters  and  repetitive  start  sentences  in 
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 the  picture  description  tasks  (e.g.,  “  I  see  a  black  and  white  cartoon  ”  for  the  PiSCES  database), 

 only  the  last  15  voiced  seconds,  as  determined  by  the  VAD-slice,  were  used  for  both  parameter 

 extraction  techniques  listed  below.  Therefore,  only  excerpts  with  a  VAD-slice  duration  of  at 

 least  15  seconds  were  included,  resulting  in  2901  samples  from  82  participants  (554  Marloes, 

 1184 PiSCES, 1163 Radboud). 

 The  extraction  of  speech  parameters  was  conducted  using  the  OpenSMILE  3.0.1 

 Python  API  (Eyben  et  al.,  2010)  and  the  GeMAPSv01b  functional  configuration  (Eyben  et  al., 

 2016).  The  selection  of  the  GeMAPSv01b  configuration  was  in  line  with  previous  research 

 (Baird  et  al.,  2019,  2021;  Jati  et  al.,  2018;  Kappen,  Hoorelbeke,  et  al.,  2022;  Kappen,  Van  Der 

 Donckt,  et  al.,  2022).  Moreover,  Triantafyllopoulos  and  colleagues  (2019)  observed  that  the 

 eGeMAPS,  which  is  a  superset  of  the  GeMAPS,  is  relatively  robust  in  noisy  conditions.  A 

 comprehensive  explanation  of  the  utilized  OpenSMILE  feature  subset  can  be  found  in 

 Supplementals  S3.  During  the  manual  inspection  phase  of  the  Analyze  step  (as  illustrated  in 

 Figure  2),  differences  in  the  values  of  OpenSMILE  Low-Level  Descriptors  (LLDs)  were  observed 

 when  the  original  44.1kHz  data  was  resampled  to  16kHz.  Further  examination  of  OpenSMILE’s 

 sampling-rate  inconsistencies  is  available  in  Supplemental  S4.  This  examination  led  to 

 superposing  a  small  (Gaussian-sampled)  noise  of  -30dB  to  the  resampled  audio,  which 

 empirically improved the voiced boundary detection. 

 In  addition  to  the  acoustic  parameters  investigation,  visual  speech  style  analysis  was 

 performed  via  deep  learning  embeddings,  generated  using  the  ECAPA-TDNN  architecture 

 (Desplanques  et  al.,  2020).  These  embeddings  were  projected  into  a  two-dimensional  space 

 using  t-SNE  (Van  der  Maaten  &  Hinton,  2008).  Further  implementation  details  regarding  the 
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 GeMAPSv01b  and  ECAPA  extraction  procedures  can  be  found  in  the  feature  extraction  and 

 ECAPA-TDNN  notebooks, respectively  5  . 

 Finally,  to  evaluate  the  binary  separability  of  speech  styles  in  a  data-driven  manner,  the 

 OpenSMILE  features  and  ECAPA-TDNN  embeddings  were  also  fed  to  a  machine-learning 

 model.  Specifically,  logistic  regression,  a  linear  classification  model,  was  used  to  assess  this 

 separability.  The  Scikit-learn  Python  toolkit  by  Pedregosa  and  colleagues  (2011)  was  used  for 

 this purpose. 

 4.3.3.3. External dataset “Corpus Gesproken Nederlands” 

 To  validate  the  generalizability  of  the  data-driven  speech  style  assessment,  an  external 

 dataset  was  utilized.  Specifically,  a  subset  of  the  Corpus  Gesproken  Nederlands  (CGN),  i.e.,  the 

 Corpus  of  Spoken  Dutch,  was  leveraged  (Oostdijk,  2000).  CGN  includes  recordings  of  both 

 Flemish  and  Netherlands  Dutch,  which  are  categorized  into  various  components  based  on 

 speech  style  and  context  settings.  These  components  range  from  spontaneous  conversations 

 and  news  broadcasts,  to  sports  commentaries,  sermons,  and  read-aloud  texts.  The  corpus 

 data  is  stored  as  16-bit  PCM  16kHz  WAV  files,  and  each  recording  is  orthographically 

 transcribed and diarized. 

 Two  components  were  chosen  from  the  CGN  dataset  to  serve  as  our  unscripted  and 

 scripted  speech  styles.  Component  A,  “face-to-face  conversations”,  was  deemed  unsuitable 

 for  the  unscripted  speech  style  due  to  the  presence  of  frequent  interruptions  and  crosstalk  in 

 the  recordings.  Component  B,  “interviews  with  Dutch  teachers”,  was  used  as  unscripted 

 speech  style  data  because  the  data  has  a  low  emotional  load  and  the  interviewee’s  utterances 

 5  We  conducted  an  acoustic  analysis  on  the  duration  of  the  entire  utterance  and  found 
 that  the  results  were  consistent  with  those  obtained  from  the  last  15  seconds  of  voiced  data  for 
 both the  ECAPA-TDNN  projections and  openSMILE  features. 
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 have  few  interruptions  and  often  meet  the  15-second  duration  criterion.  Finally,  Component  O, 

 “read-aloud  texts”,  served  as  scripted  speech  style  data  in  our  validation.  In  accordance  with 

 the  acoustic  parameter  extraction  performed  on  the  web  app  data,  excerpts  of  the  last  15 

 seconds  (with  a  margin  of  2  seconds)  were  taken  from  single  speaker  segments  that  met  the 

 duration  requirement  and  the  OpenSMILE  GeMAPSv01b  configuration  was  applied.  This 

 resulted  in  a  validation  dataset  of  3357  segments  (1643  scripted  read  speech  (comp.  O)  and 

 1714 spontaneous speech (comp. A)). 

 4.4. Results 

 This  section  presents  the  results  of  the  web  app  data  analysis.  In  the  first  subsection, 

 we  focus  on  the  affective  consistency  of  the  GSSP  stimuli  and  present  the  arousal  and  valence 

 scores.  Next,  the  speech  style  of  GSSP  is  analyzed  using  renowned  acoustic  features  in 

 relation  to  the  existing  literature  on  speech  styles.  The  jitter  and  shimmer  features  trended 

 differently  from  prior  research,  prompting  a  subsection  containing  a  detailed  exploration  of  this 

 inconsistency.  The  GSSP  speech  style  is  further  evaluated  using  data-driven  methods, 

 including  an  ECAPA-TDDN  t-SNE  projection  for  analysis  and  generalizability  of  the  GSSP 

 towards unscripted speech styles beyond the web app dataset. 

 4.4.1. Arousal & valence scores 

 As  described  in  the  methods  section,  the  PiSCES  and  Radboud  database  stimuli  were 

 selected  by  choosing  the  closest  to  the  middle  of  the  valence  scale  in  its  respective  validation 

 studies,  whilst  accounting  for  potential  thematic  difficulties  that  could  elicit  certain  emotional 
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 responses  in  subgroups  of  people.  In  doing  so,  we  have  compiled  a  picture  subset  that  could 

 be  considered  emotionally  neutral  and  therefore  appropriate  for  affective  research.  Additionally, 

 we  have  conducted  a  series  of  statistical  and  descriptive  approaches  to  also  validate  the 

 appropriateness  of  our  picture  subset.  These  tests  can  be  found  on  the  analysis  repository  6  ,  as 

 they  are  not  key  findings  in  this  manuscript,  yet  are  of  importance  to  assess  the  rigidity  and 

 validity of the results presented here. 

 4.4.2. Speech feature analysis 

 4.4.2.1. Speech duration 

 Figure 5 

 Distribution  plot  of  the  VAD-sliced  utterance  durations.  The  vertical  dashed  line  on  the 

 left  indicates  the  voiced  duration  threshold  (15  seconds)  and  the  right  line  represents  the 

 instructed image description duration (30 seconds) 

 6  https://github.com/predict-idlab/gssp_analysis/scripts/1.2_FactorAnalysis.pdf 
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 The  web  app  guidelines,  outlined  in  Supplemental  S1.2.,  instructed  the  participants  to 

 discuss  each  image  for  at  least  30  seconds.  As  illustrated  by  the  histogram  of  Figure  5,  88%  of 

 the GSSP utterances met this duration requirement. 

 4.4.2.2. OpenSMILE acoustics 

 The  OpenSMILE  GeMAPSv01b  acoustic  features  were  partitioned  into  three  subsets, 

 i.e.,  a  temporal,  frequency,  and  amplitude-related  subset.  Each  subset  consists  of  four  distinct 

 features,  whose  detailed  descriptions  can  be  found  in  Supplemental  S3.  The  visualization  of 

 these  subsets  was  conducted  using  two  approaches.  The  first  approach  displays  the  features 

 using  a  box  plot  that  groups  the  data  on  speech  acquisition  task  (Marloes  (M),  PiSCES  (P), 

 Radboud  (R))  and  speech  style  (Read,  picture  description  (GSSP)),  with  each  utterance 

 contributing  a  single  data  point  to  the  corresponding  task  (see  Figure  6-8).  This  visualization 

 enables  the  interpretation  of  the  acoustic  features  in  parameter  value  space.  The  second 

 approach  employs  a  violin  delta-plot,  in  which  utterances  of  the  same  participant  and  speech 

 task  are  median-aggregated  and  then  subtracted  from  other  speech  task  aggregations  for  the 

 same  participant,  see  Figure  13  of  Supplemental  S5.  This  results  in  each  participant 

 contributing  one  data  point  for  each  delta.  This  violin  delta  plot  reveals  the  distribution  shifts 

 and  spreads  over  the  various  acquisition  tasks.  More  detailed  information  regarding  the  violin 

 delta plot can be found in Supplemental S5. 

 4.4.2.2.1. Temporal features 

 The  four  temporal  features  are  loudnessPeaksPerSec,  MeanVoicedSegmentLengthSec, 

 MeanUnvoicedSegmentLength,  and  StddevUnvoicedSegmentLength,  shown  in  Figure  6. 
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 Column  (1)  of  Figure  6  represents  the  number  of  loudness  peaks,  serving  as  a  proxy  for 

 syllable  rate  (Eyben  et  al.,  2016).  The  coherent  distribution  shift  of  the  upper  and  lower  subplot 

 of  column  (1)  indicates  that  the  “Marloes”  task  has  a  higher  articulation  rate  than  both  picture 

 description  tasks.  This  observation  is  consistent  with  (Barik,  1977;  Levin  et  al.,  1982),  which 

 attributes  this  lower  articulation  rate  to  the  need  for  planning  time  when  speaking  unprepared. 

 Column  (2)  illustrates  the  MeanVoicedSegmentLengthSec,  which  is  the  distribution  of  the  mean 

 sound  duration,  indicating  slightly  shorter  voiced  segments  for  the  “Marloes”  task  than  for  the 

 picture  description  tasks.  This  is  in  line  with  the  notion  of  voiced  segment  duration  being 

 inversely  proportional  to  the  speaking  rate  (column  (1)).  Furthermore,  (de  Silva  et  al.,  2003) 

 observed  a  tendency  towards  longer  sound  durations  for  spontaneous  speech,  which  is 

 consistent  with  our  findings.  Blaauw  (1992)  and  Laan  (1992)  found  that  pauses  tend  to  be  more 

 irregular  and  longer  for  spontaneous  speech,  as  reflected  in  the  MeanUnvoicedSegmentLength 

 (3)  and  StddevUnvoicedSegmentLength  (4)  subplots.  Based  on  these  observations,  we  can 

 conclude  that  the  temporal  characteristics  of  the  proposed  semi-scripted  speech  paradigm  are 

 highly similar to those of unscripted speech.  7 

 7  We  also  observe  that  the  speech  rate  is  lower  and  the  pauses  are  longer  for  the 
 Radboud  task  compared  to  PiSCES,  which  might  be  caused  by  the  homogeneity  of  the 
 Radboud images, making it substantially harder to describe novel things. 

 149 



 Figure 6 

 Box plot of temporal features, grouped by acquisition task (row 1) and speech style (row 2). 

 4.4.2.2.2. Frequency-related features 

 Four  frequency-related  features  were  utilized,  i.e., 

 F0semitoneFrom27.5Hz_sma3nz_amean,  F0semitoneFrom27.5Hz_sma3nz_stddevNorm, 

 F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2,  and  jitterLocal_sma3nz_amean;  the  mean 

 frequency  perturbation.  Columns  (1)  and  (2)  of  Figure  7  capture  the  distribution  of  the 

 fundamental  frequency  (F0),  i.e.,  its  mean  and  standard  deviation  respectively.  In  accordance 

 with  de  Silva  and  colleagues  (2003),  no  clear  differences  are  observed  between  these  acoustic 

 parameters  and  speech  styles.  Column  (3)  visualizes  the 

 F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2,  which  covers  the  F0-range  (i.e.,  20th  to  80th 

 percentile)  and  has  been  reported  to  be  larger  in  read  speech  (Batliner  et  al.,  1995),  consistent 
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 with  our  findings.  (Kraayeveld,  1997;  Laan,  1997)  observed  more  jitter  in  spontaneous  speech, 

 but our findings indicate a significant decrease in jitter (4) for spontaneous speech. 

 Figure 7 

 Box plot of frequency-related features, grouped by task (row 1) and speech style (row 2). 

 4.4.2.2.3. Amplitude-related features 

 Also  here,  four  features  have  been  utilized  i.e.,  (1)  loudness_sma3_amean;  the  average 

 loudness,  (2)  loudness_sma_3_percentile50.0;  the  median  loudness,  (3) 

 loudness_sma3_pctlrange0-2;  the  20th-to-80th  percentile  loudness  range,  and  (4) 

 shimmerLocaldB_sma3nZ_amean;  the  mean  amplitude  perturbation.  To  date,  few  results  are 

 available  regarding  loudness  parameters  and  speech  style.  (Laan,  1992,  1997,  p.  1)  even 

 applied  amplitude  normalization  to  eliminate  loudness  differences  in  their  experiments. 

 Columns  (1)  and  (2)  of  Figure  8  show  a  slight  increase  in  loudness  for  the  reading  task.  The 

 loudness  range,  represented  by  column  (3),  is  slightly  larger  for  the  read-aloud  task.  We 
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 observe  a  decrease  in  shimmer  (4)  for  the  picture  description  task,  contradicting  the  findings  of 

 (Kraayeveld, 1997; Laan, 1997). 

 Figure 8 

 Box plot of amplitude-related features, grouped by task (row 1) and speech style (row 2). 

 4.4.2.2.4. Jitter and shimmer inconsistencies 

 The  preceding  sections,  along  with  the  effect  size  charts  of  Supplemental  S8,  indicated 

 a  significant  decrease  in  both  jitter  and  shimmer  for  the  unscripted  GSSP  task  compared  to  the 

 scripted  read-aloud  speech.  This  is  in  contrast  to  prior  literature  that  reports  the  opposite 

 effect,  where  unscripted  speech  produces  higher  jitter  and  shimmer  values  than  scripted 

 speech.  Therefore,  we  have  included  this  additional  section  to  explore  the  potential  reasons  for 

 this  inconsistency.  Three  potential  causes  for  this  potential  discrepancy  are  presented  below. 

 The  first  plausible  explanation  for  the  acoustic  differences  could  be  (1)  the  nuances  in  speech 

 styles.  The  current  experiment  involved  participants  being  alone  in  a  room  and  talking  to  a 
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 computer  (recording  device);  while  the  previous  work  that  produced  contrasting  results  utilized 

 interview-based  spontaneous  speech  (Kraayeveld,  1997;  Laan,  1997).  Therefore,  a  promising 

 research  direction  is  to  investigate  the  acoustic  distinctions  between  these  nuanced  speech 

 styles  (e.g.  monologue  vs.  conversation,  the  effect  of  a  study  taker  on  monologue  unscripted 

 speech,  and  the  effect  of  the  presence  of  an  interviewer  in  the  room).  A  second  potential 

 explanation  could  be  that  (2)  the  OpenSMILE  toolkit  may  not  be  capable  of  accurately 

 extracting  jitter  and  shimmer  parameters  in  settings  with  higher  levels  of  environmental  noise. 

 Specifically,  sound  produced  by  environmental  elements  emanating  periodic  noises  such  as  a 

 (computer)  fan  could  be  picked  up  at  the  voiced  boundaries,  i.e.,  the  regions  where  voicing 

 ends  and  the  environmental  elements  become  more  prominent.  OpenSMILE  could  then  start  to 

 attribute  voiced  features  to  these  environmental  elements.  As  detailed  in  Supplemental  S4  , 

 abnormally  high  F0  values  were  encountered  near  those  voiced  boundaries,  which  largely 

 disappeared  when  resampling  the  raw  data  and  adding  a  small  amount  of  dithering  (noise). 

 This  supplemental  also  presents  the  elevated  values  observed  for  the  shimmer  parameter. 

 Given  that  read-speech  contains  a  greater  proportion  of  voiced  segments,  as  indicated  by  the 

 higher  syllable  rate  in  Figure  6(1),  there  is  an  increased  frequency  of  voiced  boundaries  per  time 

 unit.  This  increase  in  voiced  boundaries  potentially  contributes  to  the  increase  in  (abnormally 

 high)  augmentation  in  shimmer  and  jitter  values.  A  third  explanation  could  be  that  (3)  there  is 

 indeed  a  decreasing  trend  in  shimmer  and  jitter  values  when  analyzing  less  scripted  speech.  As 

 outlined  in  Supplemental  S7,  a  visualization  of  the  weight  coefficients  of  a  logistic  regression 

 model  revealed  that  a  substantial  negative  coefficient  was  identified  for  the  shimmer  parameter 

 when  the  model  was  fitted  on  either  the  web  app  or  CGN  dataset.  Overall,  we  can  conclude 
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 that  the  trend  for  the  majority  of  acoustic  parameters  are  in  accordance  with  the  findings  from 

 the literature. 

 4.4.3. ECAPA-TDNN projections 

 In  addition  to  examining  the  relationship  between  acoustic-prosodic  features  in  speech 

 styles  and  positioning  this  within  the  literature,  we  also  wanted  to  investigate  speech  styles 

 using  more  data-oriented  techniques.  To  this  end,  the  ECAPA-TDNN  architecture  (Desplanques 

 et  al.,  2020)  was  used  to  extract  fixed-duration  embeddings  from  the  utterances.  These 

 embeddings  were  projected  into  a  lower-dimensional  space  using  t-distributed  stochastic 

 neighbor  embedding  (t-SNE,  Van  der  Maaten  &  Hinton,  2008),  the  results  of  which  are  depicted 

 in  Figure  9.  The  upper  visualization  (a)  serves  as  a  validation  check,  as  this  demonstrates  the 

 primary  objective  of  the  ECAPA-TDNN  architecture,  which  is  speaker  identification.  Each 

 cluster  consists  of  a  single  hue-color,  indicating  that  all  cluster  points  originate  from  the  same 

 user,  demonstrating  the  successful  separation  of  speakers.  The  second  visualization  (b) 

 employs  the  same  projection  parameters  as  (a)  but  uses  speech  style  as  the  hue.  We  observe 

 that  in  the  majority  of  individual  speaker  clusters,  the  “read”  speech  style  utterances  are 

 grouped  together.  This  is  noteworthy  as  the  primary  goal  of  ECAPA-TDNN  is  speaker 

 identification,  which  implies  that  it  has  little  advantage  in  utilizing  the  silent  parts  of  the 

 utterances  and  primarily  focuses  on  acoustic  properties.  This  observation  leads  to  the 

 hypothesis  that  the  speech  style  information  resides  within  the  captured  acoustic  properties  of 

 the ECAPA-TDNN architecture. 
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 Figure 9 

 Two-dimensional t-SNE projection of ECAPA-TDNN utterance embeddings. 

 (a)  Hue determined by speaker ID. 

 (b)  Hue determined by speech style. 

 155 



 Note.  In  the  t-SNE  visualization  presented,  the  x  and  y  axes  do  not  represent  specific  measurable  or 

 interpretable  variables.  Instead,  they  are  abstract  dimensions  created  to  optimally  place  data  points  such 

 that  similar  data  points  are  close  to  each  other  in  this  two-dimensional  space,  and  dissimilar  ones  are 

 farther  apart.  In  this  visualization,  each  marker  signifies  one  speech  utterance.  As  shown  in  (a),  clusters 

 of  markers  correspond  to  utterances  by  a  single  speaker.  By  coloring  each  dot  based  on  its  speech  (trial) 

 style  in  (b),  we  observe  a  general  tendency  for  individual  speech  styles  to  cluster  within  each  speaker's 

 utterances.  This  suggests  a  potential  separability  of  speech  styles  based  on  speaker  identification 

 techniques  using  acoustic  properties.  It's  important  to  note  that  the  absolute  positions  of  clusters  or 

 points  on  the  x  and  y  axes  are  not  directly  interpretable,  but  rather  their  relative  positions  to  one  another 

 carry significance. 

 To  further  validate  this  claim,  a  logistic  regression  model  with  speech  style  separability 

 as  the  objective  was  fitted  on  the  embeddings.  Supplemental  Figure  14  illustrates  the  normality 

 of  the  embedding  features.  As  such,  no  further  embedding  transformations  were  needed  and 

 the  features  were  standardized  by  removing  the  mean  and  scaling  to  unit  variance.  The  model 

 achieved  a  balanced  accuracy  score  of  84%+/-1.5%  when  using  5-fold  cross-validation  with 

 the speaker ID as a grouping variable. Model details can be found in the associated  notebook  8  . 

 4.4.4. CGN validation 

 Speech  style  separability  was  also  assessed  using  the  GeMAPSv01b  features. 

 Supplemental  Figure  15  illustrates  the  distribution  of  the  OpenSMILE  features,  which 

 demonstrates  a  non-normal  distribution  for  most  features.  As  a  result,  a  power  transformation 

 was  applied  as  a  preprocessing  step  to  ensure  more  Gaussian-like  distributions  (Yeo  & 

 Johnson,  2000).  The  GeMAPS  model  achieved  a  balanced  accuracy  score  of  83%+/-2.5%, 

 which  is  comparable  to  the  results  obtained  from  the  ECAPA-TDNN  model  in  the  above 

 8  gssp_analysis/notebooks/0.6_ECPA_TDNN_npy.ipynb 
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 section.  A  5-fold  cross-validation  with  the  speaker  ID  as  the  grouping  variable  was  used  as  the 

 validation setup. 

 Finally,  to  ensure  maximum  generalizability  towards  the  CGN  dataset,  an  educated 

 subset  of  24  GeMAPSv01b  features  was  crafted  based  on  their  known  contribution  to  speech 

 style  representativity.  The  model  achieved  a  cross-fold  score  of  81%  +/-  2%,  using  the  within 

 web  app  dataset  validation  setup  as  described  in  the  previous  paragraph.  Subsequently,  this 

 model  was  fitted  on  the  whole  web  application  dataset  and  validated  on  the  external  CGN 

 dataset.  This  resulted  in  a  balanced  accuracy  score  of  70%,  as  outlined  by  Table  1.  In  addition, 

 a  confusion  matrix  can  be  found  in  figure  10,  which  displays  the  predicted  versus  true  labels  to 

 see  how  the  accuracy  was  built  up.  Due  to  the  distribution  shift  between  the  training  and 

 validation  sets,  a  decrease  in  accuracy  compared  to  the  within-web-app  cross-fold  accuracy 

 was  expected.  The  obtained  performance  indicates  that  the  GeMAPSv01b  web  app  data 

 speech  style  decision  boundary  also  holds  predictive  power  when  validated  on  the  “B”  and  “O” 

 components  of  the  CGN  dataset,  thus  indicating  an  acoustic  correspondence  between  the 

 picture  description  GSSP  speech  (web  app)  and  the  interviewee  speech  (CGN).  Additional 

 information  regarding  the  model  and  feature  subset  selection  can  be  found  in  the  associated 

 notebook  9  . 

 9  gssp_analysis/notebooks/1.3_OpenSMILE_ML.ipynb 
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 Table 1 

 CGN validation classification report. 

 Precision  Recall  F1-score  Support 

 Read  0.64  0.87  0.74  1643 

 Unscripted  0.81  0.54  0.65  1714 

 accuracy  0.70  3357 

 macro_avg  0.73  0.70  0.69  3357 

 weighted_avg  0.73  0.70  0.69  3357 

 Figure 10 

 Confusion matrix of predicted labels versus true labels. 
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 4.5. Discussion 

 This  paper  presents  the  Ghent  Semi-spontaneous  Speech  Paradigm  (GSSP),  a  picture 

 description  task  designed  to  capture  speech  data  for  affective-behavioral  research  in  both 

 experimental  and  real-world  settings.  The  GSSP  was  developed  based  on  the  requirements 

 identified  in  the  field  and  literature,  which  were  translated  into  a  list  of  criteria  to  which  the 

 paradigm  should  adhere  to.  Specifically  the  GSSP  was  designed  to  (1)  allow  for  flexible  speech 

 acquisition  duration,  facilitating  convenient  incorporation  into  existing  paradigms,  (2)  present  a 

 simple  and  congruent  task,  ensuring  that  the  obtained  speech  is  not  affected  by  the  load  of  the 

 speech  acquisition  method  itself,  (3)  be  controllable  to  limit  the  inclusion  of  unwanted  latent 

 factors,  (4)  favor  unscripted  speech  for  its  prosodic  richness  and  generalizability  to  everyday 

 speech,  and  (5)  require  minimal  human  effort  during  data  acquisition  to  enable  use  in  remote 

 and  real-world  settings.  The  GSSP  utilizes  image  stimuli  that  are  emotionally  consistent  within 

 their  respective  image  set.  This  enables  stimuli  randomization  in  longitudinal  designs,  which 

 also  mitigates  learning  effects  due  to  familiarity  with  the  stimuli  (as  occurs  with  fixed  repeated 

 stimuli).  Moreover,  both  image  sets  are  emotionally  neutral,  limiting  confounding  effects  when 

 implementing  the  GSSP  in  known  experimental  design.  Lastly,  we  specifically  designed  one 

 image  set  (PiSCES)  to  contain  stimuli  portraying  social  settings  to  supply  researchers  with 

 emotionally  neutral,  yet  congruent  stimuli  to  be  used  in  experimental  designs  using 

 psychosocial  stressors  (commonly  used,  reliable,  and  potent  stressors),  further  limiting 

 confounding effects on stress reactions. 
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 The  validation  of  the  GSSP  was  conducted  using  a  web  application  that  collected 

 speech  data  from  participants.  In  particular,  the  participants  were  instructed  to  repeatedly 

 perform  two  tasks;  a  read-aloud  text  task  and  the  GSSP.  A  duration  analysis  indicated  that 

 participants  were  able  to  describe  images  with  sufficient  duration,  therefore  adhering  to  the  first 

 criteria. 

 To  provide  a  correct  analysis  of  the  study,  it  is  important  to  ensure  that  only  valid 

 speech  samples  are  utilized.  Therefore,  an  essential  contribution  of  this  study  is  the 

 open-source  pipeline  utilized  to  process  and  evaluate  speech  data,  which  has  been 

 instrumental  in  ensuring  data  quality  and  determining  selection  criteria.  This  methodology  is  not 

 specific  to  this  research  and  can  be  applied  in  other  speech  data  studies,  particularly  due  to  its 

 open-source nature. 

 To  analyze  the  collected  data  with  regard  to  speech  styles,  three  analyses  were 

 performed.  The  first  analysis  was  concerned  with  relating  acoustic  features  and  existing 

 literature  on  scripted  vs.  unscripted  speech  styles.  Acoustic  speech  features,  extracted  using 

 the  OpenSMILE  GeMAPSv01b  functional  configuration,  exhibited  a  trend  that  is  consistent  with 

 the  literature  on  the  targeted  speech  styles,  i.e.,  scripted  read-aloud  speech  and  unscripted 

 spontaneous  speech,  therefore  adhering  to  the  fourth  requirement.  Nonetheless,  the  observed 

 trend  was  not  consistent  across  all  the  analyzed  features.  Specifically,  the  jitter  (our  fourth 

 frequency-related  feature)  and  the  shimmer  values  (our  fourth  amplitude-related  feature)  did  not 

 align  with  existing  literature  in  this  field.  Jitter  and  shimmer  both  were  lower  for  the  unscripted 

 GSSP  task  compared  to  the  scripted  read-aloud  speech,  which  contradicts  literature  that 

 reports  the  opposite  effect.  This  discrepancy  can  potentially  be  attributed  to  (a  combination  of) 

 three reasons, which are thoroughly discussed in OpenSMILE acoustics section. 
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 The  second  analysis  is  concerned  with  data-driven  techniques.  Specifically,  the 

 ECAPA-TDNN  t-SNE  projection,  presented  in  Figure  9,  demonstrated  that  speaker  clusters  are 

 further  sub-grouped  according  to  speech  style.  A  speech  style  separability  experiment  on  the 

 web  app  data,  utilizing  the  GeMAPSv01b  features,  yielded  a  balanced  accuracy  of  83%,  which 

 is  in  agreement  with  the  findings  of  Levin  and  colleagues  (1982),  who  reported  that  listeners 

 were  able  to  distinguish  between  spontaneous  and  read-aloud  speech  with  an  accuracy  of 

 84%, primarily based on temporal characteristics and false starts. 

 The  third  analysis  assessed  the  generalization  of  the  web  app  speech  style  separability 

 by  performing  an  out-of-dataset  validation  on  the  CGN  dataset,  using  scripted  read-aloud 

 speech  (comp.  O)  and  spontaneous  interviewee  speech  (comp.  B).  This  validation  resulted  in  a 

 lower,  but  still  satisfactory,  balanced  accuracy  score  of  70%.  These  results  indicate  that  there 

 is  a  clear  separation  between  speech  from  the  read-aloud  and  GSSP  task,  and  that  the 

 acoustic  properties  of  the  GSSP  task  are  in  accordance  with  those  of  spontaneous  speech 

 from well-regarded databases. 

 The  significant  variation  in  (the  quality  of)  utilized  recording  devices,  introduced  some 

 degree  of  compromise  to  the  validity  of  the  analysis.  Future  studies  that  employ  this  paradigm 

 are  advised  to  implement  stricter  guidelines  to  limit  the  inclusion  of  unwanted  variables  (third 

 criterion).  Despite  this  limitation,  the  web  application  demonstrated  the  ability  to  deploy  the 

 GSSP  at  scale  (fifth  criterion)  by  needing  no  human  interference  during  acquisition. 

 Furthermore,  the  unscripted  nature  (fourth  criterion)  of  this  paradigm  presents  an  opportunity  to 

 explore  semantic-content  aspects,  as  previous  research  has  established  the  potential  of  these 

 modalities as markers for various disorders (de Boer et al., 2020; Mueller et al., 2018). 

 161 



 In  conclusion,  the  GSSP  demonstrates  qualities  of  intuitiveness,  scalability, 

 accessibility,  and  brevity  (i.e,  30-60  seconds),  making  it  a  suitable  addition  to  well-established 

 experimental  studies  for  collecting  unscripted  speech  during  key  moments,  such  as  before  and 

 after  exposure  to  stressors  or  emotional  loads.  This  approach  does  not  compromise  other 

 essential  outcome  variables  and  can  be  seamlessly  integrated  into  remote-sensing 

 applications,  facilitating  research  on  longitudinal  mental  well-being  using  speech  and  mood 

 correlates  (Kappen  et  al.,  2023).  We  hypothesize  that  findings  obtained  from  utilizing  the  GSSP 

 will  be  easier  translatable  to  real-world  settings,  such  as  speech  collected  in  team  or  board 

 meetings,  presentations,  or  any  other  social  setting.  This  research  aligns  with  the  conclusion 

 from  Xu  (2010),  which  states  that  employed  speech  acquisition  techniques  need  constant 

 updates  to  gain  increasingly  better  insights  into  the  full  complexity  of  speech.  We  are 

 convinced  that  our  presented  GSSP,  supported  by  the  documented  code,  data  10  ,  and  analysis 

 results,  enable  behavioral  researchers  to  incorporate  an  unscripted  picture  description  task  in 

 their  research  studies.  Future  work  should  focus  on  further  assessing  the  nuances  in  speech 

 styles  and  investigating  environmental  effects  on  (this)  paradigm(s),  such  as  the  presence  of  a 

 study taker. 

 10  The provided web app dataset can also be used to analyze acoustic effects of 
 repetitive reading, as participants read the same (phonetically balanced) text 9 times. 
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 All data and code are publicly available at 

 https://www.kaggle.com/datasets/jonvdrdo/gssp-web-app-data 

 The code is available as well on GitHub at: 

 https://github.com/predict-idlab/gssp_analysis 

 https://github.com/predict-idlab/gssp_web_app 

 Contents: 
 S1: Web Application details 
 S2: Speech data parsing 
 Details regarding manual audio inspection and speech data processing methodology 
 S3: Description of utilized OpenSMILE feature subset 
 S4: OpenSMILE sampling rate inconsistency findings 
 S5: OpenSMILE delta visualizations 
 S6: ECAPA-TDNN & GeMAPS distribution plots to highlight (non)-normality 
 S7: Logistic regression weight coefficients 
 S8: Effect size Shimmer & Jitter 
 S9: Factor Analysis 
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 4.7.3.S1. Web Application Details 

 S1.1. Welcome Page 

 Figure 1 

 Welcome page Screenshot. 

 S1.2. Introduction Page 

 Original instructions: 

 ●  Deze taak is enkel uit te voeren op een laptop/computer. 

 ●  Gelieve uw oortelefoons/koptelefoon of iets dergelijks te gebruiken met microfoon; dit 

 zorgt voor hoge kwaliteit opnames. 

 ●  Indien u zeker bent dat de microfoon van uw computer van voldoende hoge kwaliteit is, 

 mag u deze gebruiken. 

 ●  Zorg dat u plaatsneemt in een rustige omgeving waar u 30 minuten omringt wordt door 

 zo min mogelijk afleiding en geluid. 

 ●  Zorg dat u een glas water bij uw laptop/computer hebt staan. 

 ●  Tijdens de taak zitten een aantal korte drinkpauzes zodat u geen droge keel krijgt door 

 het veelvuldig praten – ook dit zorgt voor hoge kwaliteit opnames. 
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 Translated instructions: 

 ●  This task is only to be performed on a desktop. 

 ●  We  strongly  suggest  using  a  headphone,  only  use  your  desktops'  microphone  when 

 you are sure that the recording quality of the device is high. 

 ●  Make  sure  that  you  are  in  a  quiet  and  distraction  free  environment  for  at  least  30 

 minutes. 

 ●  Make sure that you have a glass of water next to your desktop 

 ●  During  the  task,  several  drinking  pauses  will  occur.  This  ensures  that  you  will  not  suffer 

 from a dry throat while speaking. 

 Figure 2 

 Introduction page screenshot. 
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 S1.3. Instruction Page 

 Figure 3-5 

 Instruction page screenshots. 
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 S1.4. Rest Block 

 Figure 6 

 Rest block screenshot. 

 S1.5. “  Marloes”  Text 

 Papa en Marloes staan op het station. 

 Ze wachten op de trein. 

 Eerst hebben ze een kaartje gekocht. 

 Er stond een hele lange rij, dus dat duurde wel even. 

 Nu wachten ze tot de trein eraan komt. 

 Het is al vijf over drie, dus het duurt nog vier minuten. 

 Er staan nog veel meer mensen te wachten. 

 Marloes kijkt naar links, in de verte ziet ze de trein al aankomen. 

 177 



 S1.6. GSSP Web App Image Subsets 

 Figure 7 

 PiSCES image subset. 
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 Figure 8 

 Radboud faces image subset. 
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 4.7.3.S2. Speech Data Parsing 

 Figure  9 

 Visualizations employed during the participant audio analysis step. 
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 Note.  The  upper  plot  highlights  the  recorded,  non-VAD  cropped,  utterance  duration  for  each  database  subset, 

 allowing  to  detect  duration  outliers.  Below  this  duration  plot,  two  utterances  from  the  PiSCES  subset  are  analyzed. 

 For  each  utterance,  the  raw  and  transformed  audio  can  be  listened  to.  Below  the  audio  players,  a  time-series 

 visualization  highlights  the  predictions  of  a  voice  activity  detection  (VAD)  model  and  the  extracted  openSMILE  Low 

 Level  Descriptors  (LLDs).  The  VAD  predictions  are  used  to  detect  the  first  and  last  speech  segments,  which  on  its 

 end  determine  the  regions  that  will  be  omitted  in  the  parsing  block,  i.e.,  the  red  shaded  areas  on  the  upper  subplot. 

 The  purpose  of  the  two  lower  subplots  is  to  assess  the  ability  of  OpenSMILE  to  qualitatively  extract  speech  metrics 

 from  the  excerpts.  The  chosen  metrics,  fundamental  frequency  (F0)  and  jitter,  are  useful  indicators  of  the  stability  of 

 the  feature  extraction  process.  Finally,  the  table  at  the  bottom  of  the  figure  shows  the  correlation  of  the  extracted 

 speech features with respect to the raw (non-resampled) WAV file. The visualization code can be found here  11  . 

 Figure 10 

 Manual inspection of a participant with a large silent part at the end. 

 Note.  The  Voice  Activity  Detection  (VAD)  segmentation  is  able  to  detect  this  silence.  The  red-shaded  rectangle 

 indicates that this part will not be included in the parsed segment. 

 11  https://github.com/predict-idlab/gssp_analysis/notebooks/0.3_Process_audio_Analyze_quality.ipynb 
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 4.7.3.S3. OpenSMILE Feature Subset 

 Table 1 

 Description of utilized OpenSMILE GeMAPSv01b Functional features. 

 GeMAPSv01b name  Description 

 Temporal 

 loudnessPeaksPerSec  The  mean  rate  of  loudness  peaks,  i.e.,  the  number  of 

 loudness peaks per second. 

 MeanVoicedSegmentLengthSec  The mean length of continuously voiced regions (F0 > 0). 

 MeanUnvoicedSegmentLength 

 StddevUnvoicedSegmentLength 

 The  mean  length  and  the  standard  deviation  of  unvoiced 

 regions (i.e., F0 = 0; approximating pauses). 

 Spectral 

 F0semitoneFrom27.5Hz_sma3nz_amean 

 F0semitoneFrom27.5Hz_sma3nz_stddevNorm 

 F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2 

 Aggregation  of  moving  windows  in  which  the  Logarithmic 

 F0  is  computed  on  a  semitone  frequency  scale,  starting  at 

 27.5  Hz  (semitone  0).  The  moving  window  output  is  first 

 smoothened  by  a  moving  average  with  a  window  size  of  3 

 that  only  includes  non-zero  values  (sma3nz).  The 

 aggregations  are  respectively:  mean,  standard  deviation, 

 and range of 20th to 80th percentile. 

 To  convert  the  semitone  frequency  (F0  st  )  to  hertz,  the 

 following formula can be applied: 

 𝐹  0 
 𝐻𝑧 

   =     27 .  5  𝐻𝑧    *     2 
 𝐹  0 

 𝑠𝑡 
    /     12 

 jitterLocal_sma3nz_amean  Mean  aggregation  of  moving  window  in  which  the  deviation 

 of individual consecutive F0 period lengths is computed. 

 Amplitude 

 loudness_sma3_amean 

 loudness_sma3_percentile50.0 

 loudness_sma3_pctlrange0-2 

 Aggregation  of  moving  windows  of  perceived  signal 

 intensity  from  an  auditory  spectrum.  The  aggregation  are 

 respectively:  mean,  median,  and  range  of  20th  to  80th 

 percentile. 
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 shimmerLocaldB_sma3nz_amean  Mean  aggregation  of  moving  windows  of  the  differences  of 

 the peak amplitudes of consecutive F0 periods. 

 Note.  We further refer to Appendix 6.1 of (Eyben et  al., 2016) for implementation details. 

 4.7.3.S4. OpenSMILE Sampling Rate Inconsistency 

 Figure 11 

 Illustration  of  inconsistency  in  the  GeMAPSv01b  Low-Level-Descriptors  (LLDs)  values  when  varying  the  sample 

 frequency.  The  selection  of  F0Semitone  and  jitterLocal  as  features  was  based  on  prior  utilization  in  the  current  work 

 and their interpretability 

 The  above  figure  demonstrates  the  instability  of  the  GeMAPSv01b 

 Low-Level-Descriptors  (LLDs)  when  the  audio  sample  rate  is  altered.  At  approximately  second 

 15  and  17,  the  F0semitone  and  jitterLocal  metrics  exhibit  large  values  during  non-voiced 

 segments  in  the  case  of  the  original  44.1kHz  signal  (represented  by  the  green  trace).  In 

 particular,  an  F0semitone  value  of  62  represents  an  F0  of  987Hz,  which  is  deemed  implausible. 
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 The  original  44.1kHz  speech  signal  was  resampled  to  16kHz  using  TorchAudio’s  resample 

 method, which applies sinc-interpolation (Yang et al., 2021). 

 Our  initial  hypothesis  was  that  the  original  44.1kHZ  audio  contains  high-frequency 

 harmonics  (e.g.,  whirring  PC-fan)  that  are  more  easily  picked-up  when  OpenSMILE  is  used  in 

 certain  configurations  (in  this  case  a  higher  sampling  rate).  To  test  this  hypothesis,  we  added 

 high-frequency  Gaussian  noise  of  -30dB  to  the  audio  to  determine  if  it  would  reduce  the  ability 

 to  detect  these  harmonics.  The  results  for  a  single  segment  are  depicted  in  the  figure  below. 

 The  16kHz  resampled  data  showed  an  expected  outcome;  the  signal-to-noise  ratio  at  voiced 

 boundaries  for  the  noisy  signal,  represented  by  the  orange  trace  of  (a),  was  slightly  trimmed  at 

 second  16.25  and  16.75,  resulting  in  a  decrease  of  higher  jitter  values.  Conversely,  the  addition 

 of  noise  to  the  44.1kHz  signal,  represented  by  the  blue  trace  of  (b),  did  not  result  in  an 

 improved  detection  of  unvoiced  regions.  As  such,  there  was  no  decrease  in  F0  or  jitter  values. 

 Hence,  we  can  conclude  that  resampling  high-frequency  seems  to  contribute  more  to 

 improved voiced boundary detection than the Gaussian-noise addition. 

 Figure 12 

 Impact of Gaussian noise superposition to (resampled) audio. 

 (a)  16kHz 
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 (b)  44.1kHz 

 4.7.3.S5. OpenSMILE Delta Visualizations 

 Figure 13 

 GeMAPSv01b  feature  subset  delta  visualizations,  divided  into  temporal  (row  1),  frequency  (row  2),  and  amplitude 

 (row 3) related features. 
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 The  feature  subplots  in  the  above  graph  exhibit  a  general  trend;  the  deltas  between  the 

 unscripted-to-scripted  speech  styles  (i.e.,  M-R,  M-P)  have  a  greater  variation  and  a  consistent 

 offset.  Conversely,  the  deltas  between  the  unscripted-to-unscripted  tasks  (i.e.,  R-P)  have  a 

 more  limited  variation  and  the  offset  is  closer  to  the  0  delta  value,  which  suggests  a  greater 

 similarity in the speech features. 

 4.7.3.S6. ECAPA-TDNN & GeMAPS Distribution Plots 

 Figure 14 

 KDE  plot,  depicting  the  distribution  of  the  web  application  ECAPA-TDDN  embeddings.  A  subset  of  embedding 

 dimensions was chosen, each displaying a normal distribution. 
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 Figure 15 

 KDE plot of the web application GeMAPSv01b functional features, indicating non-normal distributions. 

 4.7.3.S7. Logistic Regression Weight Coefficients 

 Figure 16 

 Visualization  of  the  15  largest  feature  coefficients  of  the  logistic  regression  models  that  were  trained  on 

 GeMAPSv01b configuration. 

 (a)  Model trained on the web app data. 
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 (b)  Model trained on CGN data. 

 Note.  The  color  indicates  whether  the  feature  coefficient  is  positive  (green)  or  negative  (red)  in  relation  to  the  target 

 variable (Read speech). 

 Remark  how  the  weight  coefficient  for  the  “shimmerLocaldB_sma3nz_amean”  exhibits  a 

 substantial  positive  value  in  both  subplots.  This  positive  sign  for  the  coefficient  can  be 

 interpreted  as  indicating  that  a  decrease  in  shimmer  contributes  to  a  higher  likeliness  of  having 

 read-aloud  speech,  which  contradicts  existing  literature.  It  is  of  particular  interest  that  this  trend 

 is  also  observed  when  fitting  a  model  on  the  CGN  data  (b),  suggesting  that  the  OpenSMILE 

 GeMAPSv01b  shimmer  values  tend  to  decrease  as  the  speech  becomes  less  scripted.  The 

 “  jitterLocal_sma3_stddevNorm  ”  parameter,  has  a  smaller  value  and  is  not  incorporated  in  the 

 top 15 values for the CGN model (b). 
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 4.7.3.S8. Effect Size Shimmer & Jitter 

 S8.1. Shimmer 

 Figure  17 

 Effect plot of shimmer (a) and corresponding screenshots of computation process (b-c). 

 (a)  Effect plot of Shimmer. 

 (b) ANOVA. 
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 (c) Effect size summary. 

 S8.2. Jitter 

 Figure  18 

 Effect plot of jitter (a) and corresponding screenshots of computation process (b-c) 

 190 



 (a)  Effect plot of jitter. 

 (b)  ANOVA. 

 (c) Effect size summary. 

 4.7.3.S9. Factor Analysis 

 Interactive html RMarkdown file can be found here: 
 https://github.com/predict-idlab/gssp_analysis/blob/master/scripts/1.2_FactorAnalysis. 
 html 

 R Markdown 

 This is an R Markdown document displaying the code and output for the cfa and glmm’s 
 ran for valence and arousal for two image sets. 

 This results in the following (clickable) structure 

 •  1.0. Pisces Dataset 

 –  1.1. Valence 
 •  1.1.1. Cronbach’s Alpha 
 •  1.1.2. CFA 
 •  1.1.3. CFA Visualization 
 •  1.1.4. Distributions 
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 –  1.2. Arousal 
 •  1.2.1. Cronbach’s Alpha 
 •  1.2.2. CFA 
 •  1.2.3. CFA Visualization 
 •  1.2.4. Distributions 

 •  [2.0. Radboud faces] 

 –  [2.1. Valence] 
 •  2.1.1. Cronbach’s Alpha 
 •  2.1.2. CFA 
 •  2.1.3. CFA Visualization 
 •  2.1.4. Distributions 

 –  [2.2. Arousal] 
 •  2.2.1. Cronbach’s Alpha 
 •  2.2.2. CFA 
 •  2.2.3. CFA Visualization 
 •  2.2.4. Distributions 

 General code 

 Used to load and prepare dataframes 

 ##### Set environment ##### 
 rm(  list =  ls())  # Clear environment 
 cat(  "  \014  "  )  # Clear console 
 dev.off()  # Clear plot window 
 options(  contrasts=  c(  "contr.sum"  ,  "contr.poly"  ))  #  Set contrast settings to 
 effect coding 

 # Libraries 
 library(arrow) 
 library(lavaan) 
 library(lavaanPlot) 
 library(psych) 
 library(ltm) 
 library(car) 
 library(ggplot2) 
 library(ggstatsplot) 
 library(Polychrome) 

 #GLM specific 
 library(lme4) 
 library(lmerTest) 
 library(emmeans) 
 library(effects) 
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 ##### Loading data ##### 
 imageData 
 <-  as.data.frame(read_parquet(  "../loc_data/df_session_tot_cleaned.parquet"  )) 

 piscesData  <-  imageData[imageData$DB ==  'PiSCES'  ,] 
 radboudData  <-  imageData[imageData$DB ==  'Radboud'  ,] 
 marloesData  <-  imageData[imageData$DB ==  'marloes'  ,] 

 1.0. Pisces Dataset 

 1.1. Valence 
 ##### Valence ##### 
 piscesDataClean  =  piscesData[c(  "ID"  ,  "pic_name"  ,  "valence"  )] 
 piscesDataClean$pic_name  =  as.factor(piscesDataClean$pic_name) 
 piscesDataClean  =  reshape(piscesDataClean,  idvar =  "ID"  ,  timevar = 
 "pic_name"  ,  direction =  "wide"  ) 
 piscesDataCronbachs  =  piscesDataClean[ ,  2  :  16  ] 

 1.1.1. Cronbach’s Alpha 
 # Calculate Cronbach's alpha using alpha() 
 alphavar  =  psych::alpha(piscesDataCronbachs,  check.keys  =  TRUE) 
 summary(alphavar) 

 ## 
 ## Reliability analysis 
 ##  raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r 
 ##       0.84      0.84    0.88      0.26 5.4 0.025   57  8     0.27 

 1.1.2. CFA 
 names(piscesDataClean)[  2  :  16  ]  =  c(  "Picture_105"  ,  "Picture_82"  ,  "Picture_118"  , 
 "Picture_65"  ,  "Picture_88"  ,  "Picture_87"  ,  "Picture_59"  ,  "Picture_93"  , 
 "Picture_56"  ,  "Picture_81"  , 

 "Picture_110"  ,  "Picture_96"  ,  "Picture_132"  , 
 "Picture_80"  ,  "Picture_98"  ) 

 HS.model  <-  'pisces =~ Picture_105 + Picture_82 +  Picture_118 + Picture_65 + 
 Picture_88 + Picture_87 + Picture_59 + Picture_93 + Picture_56 + Picture_81 + 
 Picture_110 + Picture_96 + Picture_132 + Picture_80 + Picture_98' 

 Fit and visualize 
 ## lavaan 0.6-9 ended normally after 56 iterations 
 ## 
 ##   Estimator                                         ML 
 ##   Optimization method                           NLMINB 
 ##   Number of model parameters                        30 
 ## 
 ##                                                   Used       Total 
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 ##   Number of observations                            84          89 
 ## 
 ## Model Test User Model: 
 ## 
 ##   Test statistic                               188.181 
 ##   Degrees of freedom                                90 
 ##   P-value (Chi-square)                           0.000 
 ## 
 ## Model Test Baseline Model: 
 ## 
 ##   Test statistic                               466.939 
 ##   Degrees of freedom                               105 
 ##   P-value                                        0.000 
 ## 
 ## User Model versus Baseline Model: 
 ## 
 ##   Comparative Fit Index (CFI)                    0.729 
 ##   Tucker-Lewis Index (TLI)                       0.684 
 ## 
 ## Loglikelihood and Information Criteria: 
 ## 
 ##   Loglikelihood user model (H0)              -4979.918 
 ##   Loglikelihood unrestricted model (H1)      -4885.827 
 ## 
 ##   Akaike (AIC)                               10019.835 
 ##   Bayesian (BIC)                             10092.760 
 ##   Sample-size adjusted Bayesian (BIC)         9998.124 
 ## 
 ## Root Mean Square Error of Approximation: 
 ## 
 ##   RMSEA                                          0.114 
 ##   90 Percent confidence interval - lower         0.091 
 ##   90 Percent confidence interval - upper         0.137 
 ##   P-value RMSEA <= 0.05                          0.000 
 ## 
 ## Standardized Root Mean Square Residual: 
 ## 
 ##   SRMR                                           0.099 
 ## 
 ## Parameter Estimates: 
 ## 
 ##   Standard errors                             Standard 
 ##   Information                                 Expected 
 ##   Information saturated (h1) model          Structured 
 ## 
 ## Latent Variables: 
 ##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
 ##   pisces =~ 
 ##     Picture_105       5.297    1.451    3.651    0.000    5.297    0.407 
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 ##     Picture_82        4.740    1.734    2.733    0.006    4.740    0.311 
 ##     Picture_118       8.769    1.328    6.603    0.000    8.769    0.673 
 ##     Picture_65        8.353    1.519    5.498    0.000    8.353    0.582 
 ##     Picture_88        4.194    1.977    2.122    0.034    4.194    0.244 
 ##     Picture_87       11.781    2.013    5.853    0.000   11.781    0.612 
 ##     Picture_59        5.198    1.336    3.891    0.000    5.198    0.431 
 ##     Picture_93        7.133    1.309    5.451    0.000    7.133    0.578 
 ##     Picture_56        8.063    1.239    6.509    0.000    8.063    0.665 
 ##     Picture_81        9.692    1.413    6.861    0.000    9.692    0.692 
 ##     Picture_110       6.620    1.515    4.369    0.000    6.620    0.478 
 ##     Picture_96        5.934    1.575    3.766    0.000    5.934    0.419 
 ##     Picture_132       6.329    1.508    4.196    0.000    6.329    0.462 
 ##     Picture_80        9.759    1.681    5.807    0.000    9.759    0.608 
 ##     Picture_98        8.113    1.287    6.302    0.000    8.113    0.649 
 ## 
 ## Variances: 
 ##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
 ##    .Picture_105     141.212   22.442    6.292    0.000  141.212    0.834 
 ##    .Picture_82      209.994   32.918    6.379    0.000  209.994    0.903 
 ##    .Picture_118      93.033   16.340    5.693    0.000   93.033    0.548 
 ##    .Picture_65      136.514   22.772    5.995    0.000  136.514    0.662 
 ##    .Picture_88      278.204   43.328    6.421    0.000  278.204    0.941 
 ##    .Picture_87      231.777   39.210    5.911    0.000  231.777    0.625 
 ##    .Picture_59      118.188   18.868    6.264    0.000  118.188    0.814 
 ##    .Picture_93      101.667   16.930    6.005    0.000  101.667    0.666 
 ##    .Picture_56       81.859   14.300    5.724    0.000   81.859    0.557 
 ##    .Picture_81      101.959   18.198    5.603    0.000  101.959    0.520 
 ##    .Picture_110     147.831   23.846    6.199    0.000  147.831    0.771 
 ##    .Picture_96      165.490   26.356    6.279    0.000  165.490    0.825 
 ##    .Picture_132     148.002   23.780    6.224    0.000  148.002    0.787 
 ##    .Picture_80      162.325   27.408    5.923    0.000  162.325    0.630 
 ##    .Picture_98       90.502   15.635    5.788    0.000   90.502    0.579 
 ##     pisces            1.000                               1.000    1.000 

 1.1.3. CFA Visualiza�on 

 Pisces dataset - Valence 

 1.1.4. Distribu�ons 
 # Re-prep data 
 piscesDataClean  =  piscesData[c(  "ID"  ,  "pic_name"  ,  "valence"  )] 
 piscesDataClean$pic_name  =  as.factor(piscesDataClean$pic_name) 
 piscesDataClean$ID  =  as.factor(piscesDataClean$ID) 

 Visualiza�ons 

 Pisces - Valence 
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 1.2. Arousal 
 ##### Arousal ##### 
 piscesDataClean  =  piscesData[c(  "ID"  ,  "pic_name"  ,  "arousal"  )] 
 piscesDataClean$pic_name  =  as.factor(piscesDataClean$pic_name) 
 piscesDataClean  =  reshape(piscesDataClean,  idvar =  "ID"  ,  timevar = 
 "pic_name"  ,  direction =  "wide"  ) 
 piscesDataCronbachs  =  piscesDataClean[ ,  2  :  16  ] 

 1.2.1. Cronbach’s Alpha 
 # Calculate Cronbach's alpha using alpha() 
 alphavar  =  psych::alpha(piscesDataCronbachs,  check.keys  =  TRUE) 
 summary(alphavar) 

 ## 
 ## Reliability analysis 
 ##  raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r 
 ##       0.94      0.94    0.95      0.49  14 0.01   48 14     0.51 

 1.2.2. CFA 
 names(piscesDataClean)[  2  :  16  ]  =  c(  "Picture_105"  ,  "Picture_82"  ,  "Picture_118"  , 
 "Picture_65"  ,  "Picture_88"  ,  "Picture_87"  ,  "Picture_59"  ,  "Picture_93"  , 
 "Picture_56"  ,  "Picture_81"  , 

 "Picture_110"  ,  "Picture_96"  ,  "Picture_132"  , 
 "Picture_80"  ,  "Picture_98"  ) 

 HS.model  <-  'pisces =~ Picture_105 + Picture_82 +  Picture_118 + Picture_65 + 
 Picture_88 + Picture_87 + Picture_59 + Picture_93 + Picture_56 + Picture_81 + 
 Picture_110 + Picture_96 + Picture_132 + Picture_80 + Picture_98' 
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 Fit and visualize 
 ## lavaan 0.6-9 ended normally after 19 iterations 
 ## 
 ##   Estimator                                         ML 
 ##   Optimization method                           NLMINB 
 ##   Number of model parameters                        30 
 ## 
 ##                                                   Used       Total 
 ##   Number of observations                            84          89 
 ## 
 ## Model Test User Model: 
 ## 
 ##   Test statistic                               193.015 
 ##   Degrees of freedom                                90 
 ##   P-value (Chi-square)                           0.000 
 ## 
 ## Model Test Baseline Model: 
 ## 
 ##   Test statistic                               858.041 
 ##   Degrees of freedom                               105 
 ##   P-value                                        0.000 
 ## 
 ## User Model versus Baseline Model: 
 ## 
 ##   Comparative Fit Index (CFI)                    0.863 
 ##   Tucker-Lewis Index (TLI)                       0.840 
 ## 
 ## Loglikelihood and Information Criteria: 
 ## 
 ##   Loglikelihood user model (H0)              -5201.631 
 ##   Loglikelihood unrestricted model (H1)      -5105.123 
 ## 
 ##   Akaike (AIC)                               10463.261 
 ##   Bayesian (BIC)                             10536.186 
 ##   Sample-size adjusted Bayesian (BIC)        10441.550 
 ## 
 ## Root Mean Square Error of Approximation: 
 ## 
 ##   RMSEA                                          0.117 
 ##   90 Percent confidence interval - lower         0.094 
 ##   90 Percent confidence interval - upper         0.139 
 ##   P-value RMSEA <= 0.05                          0.000 
 ## 
 ## Standardized Root Mean Square Residual: 
 ## 
 ##   SRMR                                           0.070 
 ## 
 ## Parameter Estimates: 
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 ## 
 ##   Standard errors                             Standard 
 ##   Information                                 Expected 
 ##   Information saturated (h1) model          Structured 
 ## 
 ## Latent Variables: 
 ##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
 ##   pisces =~ 
 ##     Picture_105      11.707    2.013    5.816    0.000   11.707    0.591 
 ##     Picture_82       16.310    1.828    8.923    0.000   16.310    0.812 
 ##     Picture_118      15.903    2.012    7.904    0.000   15.903    0.747 
 ##     Picture_65       13.560    1.953    6.944    0.000   13.560    0.680 
 ##     Picture_88       14.346    1.846    7.771    0.000   14.346    0.738 
 ##     Picture_87       13.571    1.747    7.770    0.000   13.571    0.738 
 ##     Picture_59       16.185    1.898    8.528    0.000   16.185    0.788 
 ##     Picture_93       14.186    1.891    7.502    0.000   14.186    0.720 
 ##     Picture_56       15.444    1.835    8.415    0.000   15.444    0.781 
 ##     Picture_81       12.237    1.831    6.682    0.000   12.237    0.660 
 ##     Picture_110       7.739    1.935    4.000    0.000    7.739    0.427 
 ##     Picture_96       13.904    1.818    7.648    0.000   13.904    0.730 
 ##     Picture_132      13.627    1.914    7.121    0.000   13.627    0.693 
 ##     Picture_80       13.176    1.872    7.039    0.000   13.176    0.687 
 ##     Picture_98       14.812    1.906    7.772    0.000   14.812    0.738 
 ## 
 ## Variances: 
 ##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
 ##    .Picture_105     255.417   40.745    6.269    0.000  255.417    0.651 
 ##    .Picture_82      137.429   24.055    5.713    0.000  137.429    0.341 
 ##    .Picture_118     199.787   33.412    5.979    0.000  199.787    0.441 
 ##    .Picture_65      214.218   34.882    6.141    0.000  214.218    0.538 
 ##    .Picture_88      171.575   28.568    6.006    0.000  171.575    0.455 
 ##    .Picture_87      153.637   25.580    6.006    0.000  153.637    0.455 
 ##    .Picture_59      160.072   27.447    5.832    0.000  160.072    0.379 
 ##    .Picture_93      187.074   30.896    6.055    0.000  187.074    0.482 
 ##    .Picture_56      152.821   26.069    5.862    0.000  152.821    0.391 
 ##    .Picture_81      194.121   31.433    6.176    0.000  194.121    0.565 
 ##    .Picture_110     267.851   41.901    6.392    0.000  267.851    0.817 
 ##    .Picture_96      169.447   28.105    6.029    0.000  169.447    0.467 
 ##    .Picture_132     201.360   32.925    6.116    0.000  201.360    0.520 
 ##    .Picture_80      194.607   31.758    6.128    0.000  194.607    0.529 
 ##    .Picture_98      182.901   30.454    6.006    0.000  182.901    0.455 
 ##     pisces            1.000                               1.000    1.000 

 1.2.3. CFA Visualiza�on 

 Pisces dataset - Arousal 
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 1.2.4. Distribu�ons 
 # Re-prep data 
 piscesDataClean  =  piscesData[c(  "ID"  ,  "pic_name"  ,  "valence"  )] 
 piscesDataClean$pic_name  =  as.factor(piscesDataClean$pic_name) 
 piscesDataClean$ID  =  as.factor(piscesDataClean$ID) 

 Visualiza�ons 

 Pisces - Arousal 

 # 2.0. 
 Radboud faces ## 2.1. Valence 

 ##### Valence ##### 
 radboudDataClean  =  radboudData[c(  "ID"  ,  "pic_name"  ,  "valence"  )] 
 radboudDataClean$pic_name  =  as.factor(radboudDataClean$pic_name) 
 radboudDataClean  =  reshape(radboudDataClean,  idvar  =  "ID"  ,  timevar = 
 "pic_name"  ,  direction =  "wide"  ) 
 radboudDataCronbachs  =  radboudDataClean[ ,  2  :  16  ] 

 2.1.1. Cronbach’s Alpha 
 # Calculate Cronbach's alpha using alpha() 
 alphavar  =  psych::alpha(radboudDataCronbachs,  check.keys  =  TRUE) 
 summary(alphavar) 

 ## 
 ## Reliability analysis 
 ##  raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r 
 ##       0.89      0.89    0.91      0.36 8.3 0.017   51 8.6     0.35 
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 2.1.2. CFA 
 names(radboudDataClean)[  2  :  16  ]  =  c(  'Face_01'  ,  'Face_36'  ,  'Face_32'  ,  'Face_61'  , 
 'Face_04'  ,  'Face_24'  ,  'Face_02'  ,  'Face_49'  ,  'Face_58'  ,  'Face_46'  ,  'Face_05'  , 
 'Face_33'  ,  'Face_57'  ,  'Face_47'  ,  'Face_27'  ) 

 HS.model  <-  'radboud =~ Face_01 + Face_36 + Face_32  + Face_61 + Face_04 + 
 Face_24 + Face_02 + Face_49 + Face_58 + Face_46 + Face_05 + Face_33 + Face_57 
 + Face_47 + Face_27' 

 Fit and visualize 
 ## lavaan 0.6-9 ended normally after 20 iterations 
 ## 
 ##   Estimator                                         ML 
 ##   Optimization method                           NLMINB 
 ##   Number of model parameters                        30 
 ## 
 ##                                                   Used       Total 
 ##   Number of observations                            85          89 
 ## 
 ## Model Test User Model: 
 ## 
 ##   Test statistic                               174.182 
 ##   Degrees of freedom                                90 
 ##   P-value (Chi-square)                           0.000 
 ## 
 ## Model Test Baseline Model: 
 ## 
 ##   Test statistic                               571.377 
 ##   Degrees of freedom                               105 
 ##   P-value                                        0.000 
 ## 
 ## User Model versus Baseline Model: 
 ## 
 ##   Comparative Fit Index (CFI)                    0.819 
 ##   Tucker-Lewis Index (TLI)                       0.789 
 ## 
 ## Loglikelihood and Information Criteria: 
 ## 
 ##   Loglikelihood user model (H0)              -4927.772 
 ##   Loglikelihood unrestricted model (H1)      -4840.681 
 ## 
 ##   Akaike (AIC)                                9915.544 
 ##   Bayesian (BIC)                              9988.824 
 ##   Sample-size adjusted Bayesian (BIC)         9894.180 
 ## 
 ## Root Mean Square Error of Approximation: 
 ## 
 ##   RMSEA                                          0.105 
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 ##   90 Percent confidence interval - lower         0.081 
 ##   90 Percent confidence interval - upper         0.128 
 ##   P-value RMSEA <= 0.05                          0.000 
 ## 
 ## Standardized Root Mean Square Residual: 
 ## 
 ##   SRMR                                           0.078 
 ## 
 ## Parameter Estimates: 
 ## 
 ##   Standard errors                             Standard 
 ##   Information                                 Expected 
 ##   Information saturated (h1) model          Structured 
 ## 
 ## Latent Variables: 
 ##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
 ##   radboud =~ 
 ##     Face_01           7.066    1.485    4.757    0.000    7.066    0.505 
 ##     Face_36           7.284    1.263    5.767    0.000    7.284    0.594 
 ##     Face_32           8.577    1.308    6.556    0.000    8.577    0.658 
 ##     Face_61           7.407    1.319    5.617    0.000    7.407    0.581 
 ##     Face_04           8.736    1.527    5.723    0.000    8.736    0.590 
 ##     Face_24           7.528    1.344    5.600    0.000    7.528    0.580 
 ##     Face_02          10.139    1.364    7.433    0.000   10.139    0.723 
 ##     Face_49           9.735    1.498    6.499    0.000    9.735    0.653 
 ##     Face_58           8.523    1.404    6.070    0.000    8.523    0.619 
 ##     Face_46           7.598    1.506    5.045    0.000    7.598    0.531 
 ##     Face_05           7.625    1.377    5.537    0.000    7.625    0.575 
 ##     Face_33           9.031    1.364    6.620    0.000    9.031    0.663 
 ##     Face_57           6.207    1.432    4.334    0.000    6.207    0.466 
 ##     Face_47           9.368    1.350    6.941    0.000    9.368    0.687 
 ##     Face_27           7.324    1.228    5.962    0.000    7.324    0.610 
 ## 
 ## Variances: 
 ##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
 ##    .Face_01         145.570   23.206    6.273    0.000  145.570    0.745 
 ##    .Face_36          97.307   15.881    6.127    0.000   97.307    0.647 
 ##    .Face_32          96.528   16.166    5.971    0.000   96.528    0.568 
 ##    .Face_61         107.425   17.461    6.152    0.000  107.425    0.662 
 ##    .Face_04         142.697   23.260    6.135    0.000  142.697    0.652 
 ##    .Face_24         111.813   18.166    6.155    0.000  111.813    0.664 
 ##    .Face_02          94.130   16.420    5.733    0.000   94.130    0.478 
 ##    .Face_49         127.330   21.279    5.984    0.000  127.330    0.573 
 ##    .Face_58         116.898   19.251    6.072    0.000  116.898    0.617 
 ##    .Face_46         146.669   23.518    6.237    0.000  146.669    0.718 
 ##    .Face_05         117.988   19.138    6.165    0.000  117.988    0.670 
 ##    .Face_33         104.206   17.496    5.956    0.000  104.206    0.561 
 ##    .Face_57         139.054   22.001    6.320    0.000  139.054    0.783 
 ##    .Face_47          98.264   16.722    5.876    0.000   98.264    0.528 

 201 



 ##    .Face_27          90.419   14.840    6.093    0.000   90.419    0.628 
 ##     radboud           1.000                               1.000    1.000 

 2.1.3. CFA Visualiza�on 

 Radboud dataset - Valence 

 2.1.4. Distribu�ons 
 # Re-prep data 
 piscesDataClean  =  piscesData[c(  "ID"  ,  "pic_name"  ,  "valence"  )] 
 piscesDataClean$pic_name  =  as.factor(piscesDataClean$pic_name) 
 piscesDataClean$ID  =  as.factor(piscesDataClean$ID) 

 Visualiza�ons 

 Pisces - Valence 

 ## 2.2. 
 Arousal 

 ##### Valence ##### 
 radboudDataClean  =  radboudData[c(  "ID"  ,  "pic_name"  ,  "arousal"  )] 
 radboudDataClean$pic_name  =  as.factor(radboudDataClean$pic_name) 
 radboudDataClean  =  reshape(radboudDataClean,  idvar  =  "ID"  ,  timevar = 
 "pic_name"  ,  direction =  "wide"  ) 
 radboudDataCronbachs  =  radboudDataClean[ ,  2  :  16  ] 

 2.2.1. Cronbach’s Alpha 
 # Calculate Cronbach's alpha using alpha() 
 alphavar  =  psych::alpha(radboudDataCronbachs,  check.keys  =  TRUE) 
 summary(alphavar) 
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 ## 
 ## Reliability analysis 
 ##  raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r 
 ##       0.95      0.95    0.96      0.57  20 0.0075   36 14     0.56 

 2.2.2. CFA 
 names(radboudDataClean)[  2  :  16  ]  =  c(  'Face_01'  ,  'Face_36'  ,  'Face_32'  ,  'Face_61'  , 
 'Face_04'  ,  'Face_24'  ,  'Face_02'  ,  'Face_49'  ,  'Face_58'  ,  'Face_46'  ,  'Face_05'  , 
 'Face_33'  ,  'Face_57'  ,  'Face_47'  ,  'Face_27'  ) 

 HS.model  <-  'radboud =~ Face_01 + Face_36 + Face_32  + Face_61 + Face_04 + 
 Face_24 + Face_02 + Face_49 + Face_58 + Face_46 + Face_05 + Face_33 + Face_57 
 + Face_47 + Face_27' 

 Fit and visualize 
 ## lavaan 0.6-9 ended normally after 17 iterations 
 ## 
 ##   Estimator                                         ML 
 ##   Optimization method                           NLMINB 
 ##   Number of model parameters                        30 
 ## 
 ##                                                   Used       Total 
 ##   Number of observations                            85          89 
 ## 
 ## Model Test User Model: 
 ## 
 ##   Test statistic                               222.273 
 ##   Degrees of freedom                                90 
 ##   P-value (Chi-square)                           0.000 
 ## 
 ## Model Test Baseline Model: 
 ## 
 ##   Test statistic                              1087.748 
 ##   Degrees of freedom                               105 
 ##   P-value                                        0.000 
 ## 
 ## User Model versus Baseline Model: 
 ## 
 ##   Comparative Fit Index (CFI)                    0.865 
 ##   Tucker-Lewis Index (TLI)                       0.843 
 ## 
 ## Loglikelihood and Information Criteria: 
 ## 
 ##   Loglikelihood user model (H0)              -5070.572 
 ##   Loglikelihood unrestricted model (H1)      -4959.436 
 ## 
 ##   Akaike (AIC)                               10201.145 
 ##   Bayesian (BIC)                             10274.424 
 ##   Sample-size adjusted Bayesian (BIC)        10179.780 
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 ## 
 ## Root Mean Square Error of Approximation: 
 ## 
 ##   RMSEA                                          0.131 
 ##   90 Percent confidence interval - lower         0.110 
 ##   90 Percent confidence interval - upper         0.153 
 ##   P-value RMSEA <= 0.05                          0.000 
 ## 
 ## Standardized Root Mean Square Residual: 
 ## 
 ##   SRMR                                           0.062 
 ## 
 ## Parameter Estimates: 
 ## 
 ##   Standard errors                             Standard 
 ##   Information                                 Expected 
 ##   Information saturated (h1) model          Structured 
 ## 
 ## Latent Variables: 
 ##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
 ##   radboud =~ 
 ##     Face_01          13.568    1.776    7.640    0.000   13.568    0.723 
 ##     Face_36          13.139    1.701    7.724    0.000   13.139    0.729 
 ##     Face_32          14.518    1.659    8.753    0.000   14.518    0.796 
 ##     Face_61          14.030    1.776    7.901    0.000   14.030    0.741 
 ##     Face_04          13.858    1.790    7.743    0.000   13.858    0.730 
 ##     Face_24          13.351    1.706    7.827    0.000   13.351    0.736 
 ##     Face_02          13.987    1.668    8.387    0.000   13.987    0.773 
 ##     Face_49          12.272    1.577    7.780    0.000   12.272    0.733 
 ##     Face_58          13.383    1.589    8.420    0.000   13.383    0.775 
 ##     Face_46          13.872    1.852    7.490    0.000   13.872    0.713 
 ##     Face_05          13.171    1.561    8.435    0.000   13.171    0.776 
 ##     Face_33          15.258    1.575    9.687    0.000   15.258    0.850 
 ##     Face_57          13.971    1.773    7.882    0.000   13.971    0.740 
 ##     Face_47          14.586    1.535    9.504    0.000   14.586    0.840 
 ##     Face_27          14.357    1.677    8.559    0.000   14.357    0.784 
 ## 
 ## Variances: 
 ##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 
 ##    .Face_01         167.812   27.096    6.193    0.000  167.812    0.477 
 ##    .Face_36         152.107   24.605    6.182    0.000  152.107    0.468 
 ##    .Face_32         122.170   20.341    6.006    0.000  122.170    0.367 
 ##    .Face_61         161.597   26.245    6.157    0.000  161.597    0.451 
 ##    .Face_04         167.974   27.182    6.179    0.000  167.974    0.467 
 ##    .Face_24         150.716   24.436    6.168    0.000  150.716    0.458 
 ##    .Face_02         131.867   21.695    6.078    0.000  131.867    0.403 
 ##    .Face_49         129.747   21.014    6.174    0.000  129.747    0.463 
 ##    .Face_58         119.136   19.620    6.072    0.000  119.136    0.399 
 ##    .Face_46         186.223   29.977    6.212    0.000  186.223    0.492 
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 ##    .Face_05         114.656   18.891    6.069    0.000  114.656    0.398 
 ##    .Face_33          89.525   15.584    5.745    0.000   89.525    0.278 
 ##    .Face_57         161.447   26.209    6.160    0.000  161.447    0.453 
 ##    .Face_47          88.986   15.323    5.807    0.000   88.986    0.295 
 ##    .Face_27         129.495   21.419    6.046    0.000  129.495    0.386 
 ##     radboud           1.000                               1.000    1.000 

 2.2.3. CFA Visualiza�on 

 Radboud dataset - Arousal 

 2.2.4. Distribu�ons 
 # Re-prep data 
 piscesDataClean  =  piscesData[c(  "ID"  ,  "pic_name"  ,  "valence"  )] 
 piscesDataClean$pic_name  =  as.factor(piscesDataClean$pic_name) 
 piscesDataClean$ID  =  as.factor(piscesDataClean$ID) 

 Visualiza�ons 

 Pisces - Valence 
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 5.1. Abstract 

 Heterogeneity  in  speech  under  stress  has  been  a  recurring  issue  in  stress  research, 

 potentially  due  to  varied  stress  induction  paradigms.  This  study  investigated  speech  features  in 

 semi-guided  speech  following  two  distinct  psychosocial  stress  paradigms  (Cyberball  and  MIST) 

 and  their  respective  control  conditions.  Only  negative  affect  increased  during  Cyberball,  while 

 self-reported  stress,  skin  conductance  response  rate,  and  negative  affect  increased  during 

 MIST.  Fundamental  frequency  (F0),  speech  rate,  and  jitter  significantly  changed  during  MIST, 

 but  not  Cyberball;  HNR  and  shimmer  showed  no  expected  changes.  The  results  indicate  that 

 observed  speech  features  are  robust  in  semi-guided  speech  and  sensitive  to  stressors  eliciting 

 additional  physiological  stress  responses,  not  solely  decreases  in  negative  affect.  These 

 differences  between  stressors  may  explain  literature  heterogeneity.  Our  findings  support  the 

 potential  of  speech  as  a  stress  level  biomarker,  especially  when  stress  elicits  physiological 

 reactions,  similar  to  other  biomarkers.  This  highlights  its  promise  as  a  tool  for  measuring  stress 

 in  everyday  settings,  considering  its  affordability,  non-intrusiveness,  and  ease  of  collection. 

 Future  research  should  test  these  results'  robustness  and  specificity  in  naturalistic  settings, 

 such  as  freely  spoken  speech  and  noisy  environments  while  exploring  and  validating  a  broader 

 range of informative speech features in the context of stress. 

 5.2. Introduction 

 Stress  is  a  physiological  and  psychological  response  to  internal  or  external  stimuli  that 

 are  perceived  as  threatening  to  an  individual’s  well-being  (Lazarus  &  Folkman,  1984;  McEwen, 
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 2007).  Whether  it  be  personal  or  professional,  acute  or  chronic,  stress  is  a  common  aspect  of 

 modern  life  that  impacts  people  of  all  ages  and  backgrounds.  Acute  stress  is  a  normal  part  of 

 the  human  experience  and  can  be  adaptive  in  the  short  term  by  enabling  individuals  to  respond 

 to  challenges  and  adapt  to  their  environment  (McEwen,  2007).  However,  when  stress  becomes 

 chronic,  it  can  have  serious  and  long-lasting  effects  on  an  individual’s  physical  and  mental 

 health,  such  as  cardiovascular  disease,  cognitive  impairment,  depression,  anxiety,  and  other 

 (mental)  health  disorders  (Slavich,  2016;  Yaribeygi  et  al.,  2017).  As  a  result,  accurately 

 measuring  and  regularly  monitoring  stress  levels  is  crucial  for  maintaining  optimal  health  and 

 well-being (Crosswell & Lockwood, 2020; Epel et al., 2018). 

 Given  chronic  stress's  effects  on  mental  and  physical  health,  various  methods  have 

 been  developed  for  assessing  peoples’  stress  levels  including  physiological,  self-report,  and 

 behavioral  methods  (Allen  et  al.,  2014).  While  each  method  has  advantages,  they  also  have 

 unresolved  limitations,  such  as  cost,  validity,  intrusiveness,  or  lack  of  accuracy  in  natural 

 settings  (Slavich  et  al.,  2019).  Consequently,  speech  has  been  suggested  as  a  non-intrusive 

 and  cost-effective  method  capable  of  measuring  stress  over  extended  periods.  Speech 

 recordings  can  be  obtained  from  various  sources,  such  as  phone  calls  or  meetings,  without  the 

 need  for  specialized  equipment,  making  it  cost-effective  and  allowing  for  data  collection  in 

 naturalistic  settings,  which  reduces  intrusiveness  (Giddens  et  al.,  2013;  Kappen,  Hoorelbeke,  et 

 al., 2022; Slavich et al., 2019). 

 Acoustic  changes  in  speech  have  been  observed  in  response  to  (acute)  stress  (Giddens 

 et  al.,  2013;  Kappen,  Van  Der  Donckt,  et  al.,  2022;  Van  Puyvelde  et  al.,  2018).  However, 

 whereas  most  former  analyses  were  done  in  studies  that  used  either  voice  actors  or 

 read-out-loud  speech  paradigms,  it  is  important  to  shift  towards  evaluating  the  potential  of 
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 freely  spoken  speech  as  it  would  occur  in  daily  life  (Van  Der  Donckt  et  al.,  2023)  to  not  limit  the 

 ecological  validity  of  the  results.  In  addition,  whereas  former  studies  rarely  used  validated 

 stress  paradigms  or  failed  to  validate  the  stress  experience  of  participants,  our  recent  studies 

 addressed  these  limitations  by  utilizing  validated  stress  induction  techniques  and  gathering 

 self-reports.  However,  they  are  still  limited  by  1)  the  use  of  one  single  stress  induction  paradigm 

 and  2)  read-out-loud  speech  (Kappen,  Hoorelbeke,  et  al.,  2022;  Kappen,  Van  Der  Donckt,  et  al., 

 2022). 

 In  the  current  study,  we  focus  on  a  key  set  of  features  that,  although  varying  in  the 

 frequency  of  appearance  in  the  literature,  have  consistently  demonstrated  their  relevance 

 across  studies.  We  refer  to  these  features  as  acoustic  (physical  properties  of  speech)  and 

 prosodic  (suprasegmental  aspects  of  speech  contributing  to  the  overall  rhythm,  intonation,  and 

 stress  patterns),  with  all  chosen  features  belonging  to  either  one  or  both  categories.  These 

 include  the  Fundamental  Frequency  (F0),  a  measure  of  the  vocal  cord’s  vibration  frequency, 

 that  generally  increases  with  stress  (Giddens  et  al.,  2013;  Kappen,  Van  Der  Donckt,  et  al.,  2022; 

 Van  Puyvelde  et  al.,  2018),  jitter  (vocal  frequency  variation)  and  shimmer  (vocal  intensity 

 variation)  which  have  been  observed  to  decrease  due  to  stress  (Giddens  et  al.,  2013;  Kappen, 

 Van  Der  Donckt,  et  al.,  2022;  Van  Puyvelde  et  al.,  2018),  and  the  Harmonics-to-Noise  Ratio 

 (HNR;  relative  amount  of  noise  in  comparison  to  harmonics  in  the  voice)  which  has  been  shown 

 to  decrease  in  the  context  of  a  physical  stressor  (any  physical  event  or  stimulus  that  elicits 

 stress)  and  has  mixed  results  in  the  context  of  psychological  stress  (Giddens  et  al.,  2013; 

 Godin  et  al.,  2012;  Godin  &  Hansen,  2015;  Kappen,  Van  Der  Donckt,  et  al.,  2022;  Mendoza  & 

 Carballo,  1998).  Additionally,  we  will  investigate  the  effect  of  stress  on  changes  in  speech  rate 
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 (talking  speed)  which  has  been  shown  to  increase  during  stress  in  free  speech  samples 

 (Giddens et al., 2010, 2013; Rothkrantz et al., 2004). 

 While  previous  studies  have  identified  links  between  specific  (acoustic)  features  of 

 speech  and  stress,  more  research  is  needed  to  fully  understand  the  current  heterogeneity, 

 robustness,  and  sensitivity  of  these  relationships  (Giddens  et  al.,  2013;  Kappen,  Hoorelbeke,  et 

 al.,  2022;  Van  Puyvelde  et  al.,  2018).  This  can  only  be  done  if  we  do  not  limit  our  studies  to 

 single  stress  paradigms,  especially  considering  that  different  stressors  used  in  these  paradigms 

 elicit  different  stress  responses.  Therefore,  exposing  participants  to  different  stress  paradigms, 

 but  with  similar  experimental  setups  (i.e.,  active  control  task  vs  stress  task),  will  allow  us  to 

 better  understand  the  basis  of  the  observed  effects  on  speech  under  stress.  We  aim  to 

 understand  whether  the  observed  changes  in  speech  features  that  occur  are  related  to  one’s 

 changes  in  mood  (e.g.,  increased  negative  affect)  or  to  physiological  reactions  (by  activation  of 

 the  hypothalamic-pituitary-adrenocortical  (HPA)  axis),  by  using  two  well-established  stress 

 induction  paradigms  that  specifically  elicit  these  changes.  We  employed  the  Cyberball 

 (Williams  et  al.,  2000)  and  the  Montreal  Imaging  Stress  Task  (MIST)  (Dedovic  et  al.,  2005) 

 paradigms  to  address  these  limitations  and  further  uncover  the  sensitivity  and  robustness  of 

 speech  features  under  stress.  Both  paradigms  use  a  psychosocial  stressor,  include  an  active 

 control  condition,  and  unscripted  speech  will  be  collected  by  having  participants  describe 

 screenshots  from  the  paradigm.  See  Van  Der  Donckt  and  colleagues  for  a  thorough 

 comparison of speech styles and considerations in speech collection paradigms (2023). 

 The  main  difference  between  these  two  paradigms  is  that  the  Cyberball  induces  stress 

 in  the  form  of  feelings  of  negative  mood  by  means  of  ostracism  due  to  excluding  the  participant 

 from  the  task  (Williams,  2007;  Williams  et  al.,  2000),  whereas  the  MIST  induces  stress  by 
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 adding  components  of  social  evaluative  threat  (SET)  to  a  cognitively  challenging  task  (Dedovic 

 et  al.,  2005).  Ostracism  has  been  shown  to  worsen  one’s  mood  but  is  mostly  limited  to 

 psychological  responses  and  does  not  show  a  neuroendocrine  (cortisol)  response  (Helpman  et 

 al.,  2017;  Williams,  2007;  Zwolinski,  2012),  whereas  SET  elicits  a  strong  physiological, 

 neuroendocrine  (cortisol)  response  in  addition  to  a  decreased  mood  (Allen  et  al.,  2014;  Bosch 

 et al., 2009; Dickerson, 2008; Dickerson & Kemeny, 2004). 

 5.2.1. Research Objectives & Hypotheses 

 We  will  gauge  the  stress  response  based  on  increased  skin  conductance  response  rate 

 (SCRR),  as  well  as  self-reports  on  increased  experienced  stress  and  negative  affect  during  the 

 stress  block  as  compared  to  the  control  block.  Moreover,  this  is  the  first  study  to  use  a 

 picture-describe  paradigm  to  capture  semi-guided  speech  that  closely  resembles  natural 

 speech  in  order  to  yield  ecologically  valid  results.  For  more  details,  see  Van  Der  Donckt  and 

 colleagues  (2023).  Negative  Affect  .  We  expect  increases  in  Negative  Affect  after  the  stress 

 blocks  compared  to  the  control  blocks  for  both  paradigms.  Self-reported  Stress  .  We  expect 

 increased  self-reported  stress  during  the  stress  block  for  the  MIST.  However,  we  do  not  expect 

 increases  in  self-reported  stress  for  the  Cyberball,  as  its  effect  is  inconsistent  and  strongly 

 mediated  by  traits  such  as  the  need  to  belong,  limiting  the  observance  of  this  effect  in  a 

 general  population  (Beekman  et  al.,  2016).  Skin  Conductance  Response  Rate  (SCRR).  We 

 expect  an  increase  in  SCRR  during  the  stress  block  for  the  MIST,  but  not  for  the  Cyberball. 

 Speech  features.  We  expect  similar  results  for  speech  features  as  observed  in  earlier  studies 

 that  used  read-out-loud  protocols  (Giddens  et  al.,  2013;  Kappen,  Van  Der  Donckt,  et  al.,  2022; 

 Van  Puyvelde  et  al.,  2018)  for  the  MIST.  That  is,  increases  in  Fundamental  Frequency  (F0) 
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 (Giddens  et  al.,  2013;  Kappen,  Van  Der  Donckt,  et  al.,  2022;  Van  Puyvelde  et  al.,  2018)  and 

 measures  of  changes  in  speech  rate  (Giddens  et  al.,  2013;  Rothkrantz  et  al.,  2004),  decreases 

 in  Jitter  (Giddens  et  al.,  2013;  Van  Puyvelde  et  al.,  2018)  and  Shimmer  (Giddens  et  al.,  2013; 

 Kappen,  Van  Der  Donckt,  et  al.,  2022;  Van  Puyvelde  et  al.,  2018),  and  changes  in  Harmonics  to 

 Noise  (HNR;  added  noise  in  the  voice),  but  the  direction  is  unclear  due  to  mixed  results  in  the 

 context  of  psychological  stressors  (Giddens  et  al.,  2013;  Godin  et  al.,  2012;  Godin  &  Hansen, 

 2015;  Kappen,  Van  Der  Donckt,  et  al.,  2022;  Mendoza  &  Carballo,  1998).  In  the  Cyberball 

 paradigm,  the  occurrence  and  direction  of  significant  speech  feature  changes  will  reveal  the 

 sensitivity  and  heterogeneity  of  speech  as  a  biomarker  for  (psychological)  stress.  Considering 

 the  expected  difference  in  the  stress  reaction  in  the  Cyberball  (negative  mood)  compared  to  the 

 MIST  (negative  mood  +  physiological  reaction),  the  occurrence  of  significant  changes  in  speech 

 features  would  show  that  speech  is  responsive  to  mere  changes  in  mood  due  to  stress 

 (therefore  occurring  in  both  paradigms).  A  lack  of  changes  in  speech  features  would,  however, 

 illustrate  that  speech  (features)  are  merely  related  to  physiological  stress  responses  and 

 therefore  follow  the  patterns  (i.e.,  effects  in  MIST,  but  not  in  Cyberball)  observed  in  other 

 biomarkers  such  as  cortisol  (Allen  et  al.,  2014;  Dickerson,  2008;  Dickerson  &  Kemeny,  2004). 

 Lastly,  it  is  possible  that  different  speech  features  have  varying  sensitivity,  where  some  might 

 just  be  responsive  to  combined  mood  and  physiological  stress  responses,  and  others  might  be 

 responsive  to  mere  changes  in  mood.  For  example,  one  of  the  most  homogeneously  reported 

 speech  features  to  change  under  stress  is  F0,  which  could  indicate  that  this  is  a  sensitive 

 feature  to  any  change  in  experienced  stress  (i.e.,  mood  or  physiological)  since  it  occurs  in  many 

 different  studies  and  stress  paradigms.  Other  features  have  shown  to  be  more  heterogeneous 

 (e.g.,  HNR,  Jitter),  which  could  be  explained  by  the  use  of  different  paradigms  and  stressors. 
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 The  combination  of  two  different  stress  induction  paradigms,  which  elicit  different  stress 

 responses  by  calling  on  different  psychological  constructs  (Cyberball;  ostracism,  MIST;  social 

 evaluative  threat),  tested  in  the  same  group  of  participants,  will  give  unique  insights  into  the 

 robustness  (by  using  semi-guided  speech),  sensitivity  (by  comparing  a  mood  only  to  a  mood 

 plus  physiological  stress  reaction),  and  up  to  this  point  heterogeneity  (by  comparing  two 

 commonly used stress paradigms) in a variety of speech features under stress. 

 5.3. Methods 

 5.3.1. Participants 

 A  convenience  sample  of  66  healthy  subjects  (13  women,  53  men,  age  M  =  21.29,  SD  = 

 2.82)  was  recruited  through  social  media.  Upon  registration,  participants  were  checked  for 

 exclusion  criteria  (see  supplemental  material).  The  study  was  conducted  in  accordance  with  the 

 declaration  of  Helsinki  and  received  ethical  approval  from  the  Ghent  University  hospital  ethical 

 committee  (registration  number:  B6702020000676).  Another  part  of  the  study  investigates  the 

 effects  of  (psychosocial)  stressors  on  neural  correlates.  Results  of  electrophysiological 

 correlates  will  be  published  elsewhere.  Other  collected  data  that  were  not  part  of  the  current 

 paper’s research objectives will only be described in the supplemental materials. 

 All  participants  gave  written  informed  consent  before  participating  and  were  debriefed 

 afterward  on  the  true  purpose  of  the  study.  A  40  Euro  compensation  fee  was  awarded  upon 

 completion of both testing days through bank transfer. 
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 5.3.1. Procedure 

 5.3.1.1. On-site experimental session 

 Participants  completed  online  informed  consent  and  trait  questionnaires  (beyond  this 

 paper’s  scope)  prior  to  two  in-person  experimental  sessions,  which  were  conducted  in  a 

 dedicated  room  in  the  Department  of  Adult  Psychiatry  at  Ghent  University  Hospital.  At  the  start 

 of  the  first  on-site  session,  participants  signed  a  paper  consent  form,  and  experimenters 

 reviewed the cover story (see Cover Story). 

 The  experiment  was  designed  in  OpenSesame  version  3.2.8  and  was  carried  out  on  a 

 dedicated  computer  (Dell,  Windows  10).  Participants  came  in  on  two  different  days,  at  least  7 

 days  apart.  The  experimental  sessions  were  identically  structured,  but  only  the  task  contents 

 differed  (Day1;  see  Cyberball  ,  Day2;  see  MIST  ).  Prior  to  the  task,  electrodes  (ECG,  EDA;  see 

 Physiological  Data  )  and  an  EEG  cap  were  placed  (duration  10-30  minutes;  beyond  this  paper’s 

 scope).  The  experiment  started  with  a  10-minute  (5  minutes  eyes  closed,  5  minutes  eyes  open) 

 resting  block  to  achieve  habituation.  After  this,  the  Control  task  started.  After  this  condition, 

 there  was  another  10-minute  resting  block,  followed  by  a  Stress  task  and  another  10-minute 

 resting  block.  Subsequent  to  each  task  block  (i.e.,  Control  task  and  Stress  task),  participants 

 were  prompted  to  do  a  speech  trial  (see  Speech  Data  )  and  respond  to  self-report  psychological 

 state questionnaires (see  Self-Report Data  ). See figure 1  for a flowchart figure. 
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 Figure 1 
 Flowchart of experimental design 

 Note.  The  two  days  follow  a  similar  structure  except  for  the  presented  paradigm  and  respective  control 
 and  stress  tasks.  EDA  (electrodermal  activity)  is  collected  throughout  the  paradigm.  Speech  recordings 
 (picture  description)  and  self-report  questionnaires  are  collected  directly  after  task  execution.  The  colors 
 used in the figure are congruent with the colors presented in the results section. 

 5.3.1.2. Cyberball - Day 1 

 The  Cyberball  paradigm  involved  a  ball-tossing  game  in  which  participants  played  with 

 two  computer-generated  confederates  (one  man,  one  woman,  placement  counterbalanced 

 across  participants),  represented  by  pictures  (from  Allaert  and  colleagues  (Allaert  et  al.,  2022)). 

 However,  participants  were  told  that  the  other  players  were  humans  participating  at  other 

 universities.  The  confederates'  behaviors  were  predefined  and  the  game  was  visualized  with  a 

 picture  of  the  participant  at  the  bottom  center,  while  the  confederate  pictures  were  placed  at 

 the  top  left  and  right  (Williams  et  al.,  2000).  Participants  could  throw  the  ball  to  either 

 confederate  by  pressing  an  arrow  key  (right  hand),  and  the  ball's  movement  took  1500  ms.  The 

 confederates  held  possession  between  two  and  three  seconds  (randomly  generated)  to 

 increase  the  credibility  that  they  were  human.  During  the  control  task  (inclusion  phase), 
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 participants  received  the  ball  33%  of  the  time  over  150  throws,  while  in  the  stress  task 

 (exclusion  phase),  participants  were  excluded  in  a  probabilistic  manner  from  receiving  the  ball 

 after  an  initial  normal  phase  of  30  throws.  The  chance  of  retrieving  the  ball  increased  with  each 

 subsequent  throw  not  directed  at  the  participant,  with  chances  ranging  from  0  to  100% 

 (adapted from Williams and colleagues (Williams et al., 2000)). 

 5.3.1.3. MIST - Day 2 

 During  the  Montreal  Imaging  Stress  Task  (MIST),  participants  solved  mathematical 

 equations  of  increasing  difficulty  (Dedovic  et  al.,  2005).  Equations  were  displayed  in  black  on  a 

 white  background,  and  the  correct  answer  was  always  a  number  between  zero  and  nine,  with 

 participants  answering  each  question  using  the  corresponding  number  on  the  keyboard's 

 numpad  (right  hand).  The  difficulty  scales  and  equation-generating  code  was  identical  to  the 

 original study, as supplied by prof. Pruessner (Dedovic et al., 2005). 

 The  control  task  included  seven  difficulty  scales,  with  participants  solving  up  to  ten 

 equations  per  scale.  After  each  equation,  feedback  was  given  in  the  form  of  "Correct!"  , 

 "Incorrect!"  ,  or  "Timeout!",  shown  in  black.  The  stress  task  employed  the  same  difficulty 

 scales  but  introduced  changes  to  the  task  and  feedback.  Participants  were  informed  that  their 

 performance  would  be  compared  to  that  of  a  group  and  that  they  should  perform  at  least  on 

 par  with  the  average.  Equations  were  presented  with  a  shrinking  bar  indicating  the  remaining 

 time  to  solve  the  equation,  and  the  allowed  time  was  set  to  be  90%  of  their  average  response 

 time  during  the  control  task.  After  every  three  successive  correct  or  incorrect  answers,  the 

 allowed  time  was  adjusted  by  10%  to  increase/decrease  difficulty.  Participants  also  saw  a 
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 performance  bar  with  two  arrows  indicating  their  personal  and  group  average  scores.  Their 

 personal  arrow  moved  in  steps  of  5%  of  the  bar’s  length  after  each  equation  (incorrect/timeout; 

 left,  correct;  right),  whereas  the  group  average  arrow  was  stationary  at  83%.  If  a  participant’s 

 performance  fell  below  the  average  group  performance  after  completing  five  difficulty  scales, 

 the  experimenter  would  inform  them  that  their  data  might  not  be  usable  and  urge  them  to 

 improve. 

 5.3.2. Data Collection 

 In  this  study,  several  types  of  data  were  collected  for  analysis.  While  our  main 

 hypotheses  focused  on  specific  data  modalities,  we  also  collected  additional  self-report  and 

 cardiac  data.  To  ensure  transparency,  we  have  provided  an  overview  of  these  data  modalities 

 and a complete study flowchart in the supplemental materials. 

 5.3.2.1. Speech Data 

 On  both  days,  after  completion  of  either  task  (i.e.,  control/stress  task),  participants  were 

 prompted  to  describe  a  picture  out  loud,  see  Figure  1.  The  image  was  a  screenshot  of  the  task 

 they  had  just  completed  to  avoid  introducing  noise  to  our  self-report  measures  by  having  their 

 minds  wander  (for  a  similar  approach  and  considerations,  see  Van  Der  Donckt  and  colleagues 

 (2023).  The  participants  were  instructed  to  describe  the  images  based  on  what  they  saw,  as 

 well as how it made them feel. See supplemental materials for screenshots. 
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 5.3.2.2. Self-report Data 

 On  both  days,  after  completion  of  either  task  (i.e.,  control/stress  task),  participants  were 

 asked  to  rate  their  current  levels  of  stress  and  negative  affect  (“Right  now,  how  much  do  you 

 feel...”)  using  6  negative  affect  (NA)  prompts  and  1  stress  prompt  question,  each  with  a  0-100 

 sliding  scale  (0  =  Not  at  all  -  100  =  Very  much),  see  Figure  1.  The  six  negative  affect  (NA) 

 prompts  are:  upset,  distressed,  scared,  angry,  anxious,  and  sad,  whereas  stress  was  a  single 

 item  asking  “Right  now,  how  much  do  you  feel  stressed?”.  Positive  activating  and  soothing 

 affect  were  also  collected  but  not  part  of  the  primary  hypotheses,  thus  only  described  in  the 

 supplemental  materials.  These  scales  were  adopted  from  Petrocchi  and  colleagues  (Petrocchi 

 et  al.,  2017).  Given  the  high  internal  consistency  between  the  prompts  in  the  NA  category, 

 these responses were aggregated to compute a single mean score to be used in the analysis. 

 5.3.2.3. Physiological Data 

 Both  electrocardiography  (ECG;  see  supplemental  material  for  more  info)  and 

 electrodermal  activity  (EDA)  were  collected  throughout  the  paradigms  using  the  VU-AMS 

 ambulatory  monitor  12  .  ECG  data  was  collected  using  three  electrodes,  one  placed  between  the 

 right  lower  two  ribs  (ground),  one  placed  at  the  left  lateral  side  of  the  chest  at  the  height  level  of 

 the  xiphoid  process  (V+),  and  one  slightly  below  the  right  collar  bone  four  to  five  cm  right  from 

 the  sternum  (V-).  EDA  data  was  collected  by  placing  two  velctro  electrodes  (with  applied 

 isotonic  electrode  gel;  Biopac)  on  the  middle  phalanges  of  the  left  index-  and  middle  finger.  For 

 12  VU University Amsterdam, www.vu-ams.nl, Amsterdam,  the Netherlands 
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 more  technical  information  surrounding  physiological  data  collection,  please  refer  to 

 supplemental material (  0.2_EDA.ipynb  &  scl_processing.py  ). 

 5.3.3. Data Analysis 

 5.3.3.1. Physiological Data 

 EDA  data  was  preprocessed  using  specific  Python  code,  which  can  be  found  in  the 

 supplemental  material  (  0.2_EDA.ipynb  &  scl_processing.py  ).  To  prepare  the  data  for  analysis,  a 

 2Hz  low-pass  filter  was  applied  to  the  raw  signal,  which  was  then  decomposed  into  a  tonic  and 

 phasic  component.  From  the  phasic  component,  the  Skin  Conductance  Response  Rate  (SCRR) 

 was  extracted  by  identifying  peaks  with  the  SciPy  toolkit.  The  thresholds  for  rise  and  fall  time, 

 as  well  as  peak  parameters,  were  determined  based  on  established  guidelines  from  the 

 literature (Posada-Quintero & Chon, 2020). 

 5.3.3.2. Extraction of Speech Features 

 To  ensure  data  quality,  we  manually  checked  all  recordings  whether  they  were 

 complete,  clear,  with  limited  background  noise,  and  no  excessive  clipping.  In  addition, 

 recordings  were  dropped  if  there  was  no  complementary  self-report  scales  (due  to  technical 

 issues).  Eight  recordings  were  removed,  resulting  in  120  control  recordings  (64  Cyberball,  56 

 MIST)  of  66  out  of  66  participants,  and  119  stress  recordings  (64  Cyberball,  55  MIST)  of  66  out 

 of  66  participants.  Prior  to  feature  extraction,  we  downsampled  the  speech  samples  to  16Khz 

 and  applied  dithering.  These  steps  were  performed  in  order  to  make  the  extracted  OpenSMILE 

 metrics  less  sensitive  to  environmental  harmonics  at  the  voiced  boundaries  (Van  Der  Donckt  et 
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 al.,  2023).  To  extract  features  from  the  recordings,  we  used  OpenSmile  2.3.0  (Eyben  et  al., 

 2010)  with  the  GeMAPSv01b  configuration  (Eyben  et  al.,  2015),  a  widely-used  acoustic  feature 

 set  in  voice  research  and  affective  computing.  From  this  feature  set  (feature  names  as 

 described  in  GeMAPS  added  between  brackets),  we  selected  Fundamental  Frequency  (F0; 

 F0semitoneFrom27.5Hz_sma3nz_amean),  Jitter  (jitterLocal_sma3nz_amean),  Shimmer 

 (shimmerLocaldB_sma3nz_amean),  Harmonics-to-Noise  Ratio  (HNR; 

 HNRdBACF_sma3nz_amean),  and  Voiced  Segment  Length  (MeanVoicedSegmentLengthSec) 

 and  Mean  Voiced  Segments  per  Second  (a  proxy  for  speech  speed;  VoicedSegmentsPerSec) 

 to  capture  changes  in  speech  rate.  All  features  were  computed  using  Python  3.9.6  for  a  sliding 

 window  and  then  mean-aggregated  over  the  whole  recording,  thus  not  displaying  high 

 temporal  changes.  For  detailed  information  regarding  feature  calculation  and  extraction 

 procedure,  we  refer  the  reader  to  Eyben  et  al.  (Eyben  et  al.,  2010)  and  Section  6.1  of  Eyben  et 

 al. (Eyben et al., 2015). 

 5.3.3.3. Statistical Analysis 

 Statistical  analyses  were  performed  using  R4.1.1  (for  detailed  version  information  of  the 

 software and packages used, please refer to the supplemental materials). 

 We  used  the  ‘lme4’  (Bates  et  al.,  2014)  package  to  fit  linear  mixed  models  (LMMs)  to 

 each  of  the  dependent  variables.  The  sum  of  squares  for  each  model  was  estimated  using  a 

 partial  sum  of  squares  (Anova  type  III  approach),  and  the  statistical  significance  level  was  set  to 

 p  <  .05  (these  results  are  only  reported  in  the  supplemental  materials).  Tests  for  pairwise 

 comparisons  of  the  EMMs  (estimated  marginal  means)  were  performed  with  the  ‘emmeans’ 
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 package  (Lenth,  2018).  A  false  discovery  rate  (FDR)  was  used  to  correct  for  multiple 

 comparisons  correction  for  each  data  modality  (e.g.,  all  speech  comparisons  pooled  together 

 and  penalized  accordingly)  to  minimize  the  risk  of  Type  1  errors  (Benjamini  &  Hochberg,  1995) 

 using  the  ‘p.adjust()’  function  from  the  ‘stats’  package.  In  the  results  section,  only  corrected 

 p-values  will  be  reported.  Moreover,  effect  sizes  (Cohen’s  D)  and  their  95%  confidence 

 intervals  (CI)  are  estimated  with  the  ‘eff_size()’  function  from  the  ‘emmeans’  package  (Lenth, 

 2018).  Results  are  only  reported  using  the  effect  sizes  of  within-paradigm  comparisons  to  make 

 a  comparison  between  different  dependent  variables  and  data  modalities.  Note  that 

 between-paradigm  comparisons  (i.e.,  Cyberbal  vs  MIST)  should  be  avoided  for  each  respective 

 task  (i.e.,  control  and  stress  task)  as  the  performed  tasks  and  the  described  pictures  are 

 inherently different. 

 To  control  for  the  potential  effect  of  gender  on  the  different  dependent  variables,  gender 

 was  considered  as  a  fixed  effect  for  each  individual  model  prior  to  statistical  inference. 

 However,  to  make  sure  our  models  were  parsimonious,  we  bottom-up  tested  whether  adding 

 gender  as  an  independent  variable  to  the  model  improved  each  model’s  fit  (Bates  et  al.,  2018). 

 For  each  dependent  variable,  we  compared  models  that  included  and  excluded  gender  ,  and  it 

 was  only  included  in  the  model  if  it  showed  to  be  a  significant  contributor  after  comparing 

 models  with  reducing  complexity  using  χ2  goodness-of-fit  tests  within  the  ‘anova()’  function 

 (Fox  et  al.,  2012).  The  statistical  significance  level  was  set  to  p  <  .05  and  based  on  this,  gender 

 was  included  in  the  models  for  F0,  Shimmer,  HNR,  Voiced  segment  length,  and  self-reported 

 stress.  As  such,  each  model  followed  the  following  structure;  DependentVariable ~  Phase  *  Task 

 +  Gender  + (1|ID)  or  DependentVariable ~  Phase  *  Task  + (1|ID)  .  With  Phase  having  2  levels 
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 (control  vs  stress),  Task  having  2  levels  (Cyberball  vs  MIST),  and  participant  as  a  random 

 intercept. 

 5.4. Results 

 Throughout  the  different  paradigms,  we  focus  in  our  analyses  on  three  main  modalities 

 of  which  two  are  already  more  validated  in  literature  (i.e.,  self-reports  and  physiological 

 measures)  and  one  is  our  novel  addition  to  the  state-of-the-art  (i.e.,  speech).  The  models 

 reported  will  contain  the  dependent  variable,  taskPhase  (control  vs  stress  task),  taskType  (MIST 

 vs  Cyberball),  Gender  (man  vs  woman)  if  showing  to  be  a  significant  contributor,  and  ‘(1|ID)’;  a 

 random  intercept  for  each  participant.  Per  category  (i.e.,  self-reports,  physiological,  and 

 speech),  for  each  feature,  we  will  only  describe  the  pairwise  comparisons  of  stress  vs  control 

 block  for  each  individual  paradigm  as  these  are  directly  related  to  our  research  questions.  All 

 effect  sizes  and  corresponding  95%  confidence  intervals  for  the  control-stress  comparisons 

 per  feature,  per  paradigm,  are  also  displayed  in  Figure  2.  Full  model  information  and 

 corresponding statistics are described in the analyses section of the supplemental materials. 

 5.4.1. Physiological 

 5.4.1.1. Skin Conductance Response Rate (SCRR) 

 A  significant  increase  in  SCRR  was  observed  during  the  stress  task  in  the  MIST,  b  = 

 1.30,  SE  =  .34,  t  =  3.77,  p  <  .001,  d  =  .72.,  95%  CI  [.33,  1.10],  but  not  in  the  Cyberball,  b  =  .53, 

 SE  = .32,  t  = 1.66,  p  = .098,  d =  .29, 95% CI [-.06,  .64]. 
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 5.4.2. Self-reports 

 5.4.2.1. Negative Affect 

 A  significant  increase  in  Negative  Affect  was  observed  during  the  stress  task  in  the 

 MIST,  b  =  4.29,  SE  =  1.69,  t  =  2.54,  p  =  .016,  d  =  .48.,  95%  CI  [.11,  .86],  as  well  as  in  the 

 Cyberball,  b  = 5.37,  SE  = 1.57,  t  = 3.42,  p  = .002,  d =  .60, 95% CI [.25, .96]. 

 5.4.2.2. Stress 

 A  significant  increase  in  self-reported  Stress  was  observed  during  the  stress  task  in  the 

 MIST,  b  =  17.26,  SE  =  3.84,  t  =  4.49,  p  <  .001,  d  =  .85.,  95%  CI  [.47,  1.24],  but  not  in  the 

 Cyberball,  b  = 2.60,  SE  = 3.58,  t  = .73,  p  = .469,  d =  .13, 95% CI [-.22, .48]. 

 5.4.3. Speech 

 5.4.3.1. Fundamental Frequency (F0) 

 A  significant  increase  in  F0  was  observed  during  the  stress  task  in  the  MIST,  b  =  .42,  SE 

 =  .15,  t  =  2.76,  p  =  .026,  d  =  .52.,  95%  CI  [.15,  .90],  but  not  in  the  Cyberball,  b  =  .12,  SE  =  .14,  t 

 = .85,  p  = .531,  d =  .15, 95% CI [-.20, .50]. 

 5.4.3.2. Voiced segments per second (MVSPS) 

 A  significant  increase  in  voiced  segments  per  second  was  observed  during  the  stress 

 task  in  the  MIST,  b  =  .23,  SE  =  .04,  t  =  5.44,  p  <  .001,  d  =  1.03.,  95%  CI  [.65,  1.42],  but  not  in 

 the Cyberball,  b  = .02,  SE  = .04,  t  = .52,  p  = .729,  d =  .09, 95% CI [-.26, .44]. 
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 5.4.3.3. Voiced segment length (MVSL) 

 A  significant  increase  in  voiced  segment  length  was  observed  during  the  stress  task  in 

 the  MIST,  b  =  .01,  SE  =  .005,  t  =  2.62,  p  =  .029,  d  =  .50.,  95%  CI  [.12,  .88],  but  not  in  the 

 Cyberball,  b  = -.001,  SE  = .005,  t  = -.27,  p  = .858,  d =  -.05, 95% CI [-.40, .30]. 

 5.4.3.4. Harmonics-to-noise ratio (HNR) 

 No  significant  change  in  HNR  was  observed  during  the  stress  task  in  the  MIST,  b  =  .21, 

 SE  =  .09,  t  =  2.31,  p  =  .053,  d  =  .44.,  95%  CI  [.06,  .82],  nor  in  the  Cyberball,  b  =  .10,  SE  =  .08,  t 

 = 1.19,  p  = .354,  d =  .21, 95% CI [-.14, .56]. 

 5.4.3.5. Shimmer 

 No  change  in  Shimmer  was  observed  during  the  stress  task  in  the  MIST,  b  =  -.02,  SE  = 

 .01,  t  =  -1.65,  p  =  .201,  d  =  -.31.,  95%  CI  [-.69,  .06],  nor  in  the  Cyberball,  b  =  0,  SE  =  .01,  t  = 

 -.07,  p  = .942,  d =  -.01, 95% CI [-.36, .34]. 

 5.4.3.6. Jitter 

 A  significant  decrease  in  Jitter  was  observed  during  the  stress  task  in  the  MIST,  b  = 

 -.003,  SE  =  .0009,  t  =  -3.28,  p  =  .007,  d  =  -.62.,  95%  CI  [-1.00,  -.24],  but  not  in  the  Cyberball,  b 

 = -.001,  SE  = .0009,  t  = -1.38,  p  = .292,  d =  -.24,  95% CI [-.59, .11]. 
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 Figure 2 
 Forest plot of effect sizes and confidence intervals for all control-stress comparisons per 
 paradigm 

 Note.  Effect sizes (dots; Cohen’s D) and 95% confidence  intervals (bars) for each control vs stress task 
 comparison per stress induction paradigm (Cyberball - MIST). Dependent variables are grouped on their 
 categories (i.e., physiological, self-report, speech) and are FDR corrected within their respective 
 categories. Dots are circled black and ranges are saturated (i.e. non-transparent) if a significant effect is 
 observed after correction. 

 225 



 5.5. Discussion 

 In  this  study,  we  aimed  to  gain  insights  into  the  robustness  (by  using  semi-guided 

 instead  of  read-out-loud  speech),  sensitivity  (by  comparing  a  mood  only  to  a  mood  plus 

 physiological  stress  reaction),  and  up  to  this  point  observed  heterogeneity  (by  comparing  two 

 different  commonly  used  stress  paradigms)  of  the  effects  of  stress  on  acoustic  and  prosodic 

 speech  features.  On  two  different  days,  participants  were  exposed  to  two  different  stress 

 induction  paradigms  (i.e.,  Cyberball  and  Montreal  Imaging  Stress  Task;  MIST)  with  an  expected 

 different  stress  reaction  (i.e.,  Cyberball;  changes  in  mood,  MIST;  changes  in  mood  and 

 physiological  response).  Both  paradigms  included  an  active  control  condition  in  order  to  isolate 

 the  effects  of  added  stress  on  their  speech.  Speech  samples  were  collected  directly  after  each 

 paradigm  phase  (i.e.,  control  or  stress  phase)  using  a  picture-describe  paradigm  (prompting 

 participants  to  describe  a  screenshot  from  the  paradigm)  to  capture  semi-guided  speech  that 

 closely  resembles  natural  speech  in  order  to  yield  ecologically  valid  results.  For  more  details, 

 see Van Der Donckt and colleagues (2023). 

 First,  we  used  validated  measures  to  gauge  how  the  stress  responses  elicited  by  the 

 different  stress  paradigms  (Cyberball  and  MIST),  differed.  As  such,  we  observed  that  when 

 considering  physiological  responses,  there  was  only  an  increase  in  skin  conductance  response 

 rate  (SCRR)  during  the  stress  phase  of  the  MIST,  but  not  for  the  Cyberball,  which  corresponds 

 to  our  prior  hypotheses.  In  addition  to  the  physiological  responses,  we  also  assessed 

 participants'  moods  using  self-reported  measures.  In  line  with  our  expectations,  we  observed 

 an  increase  in  self-reported  negative  affect  during  the  stress  task  of  both  paradigms.  Moreover, 

 participants  only  reported  increased  self-reported  stress  during  the  MIST.  These  results  are  in 
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 line  with  the  literature,  as  previously  mentioned.  The  Cyberball  task  affects  one's  mood  due  to 

 feelings  of  ostracization,  but  it  only  elicits  psychological  responses  and  does  not  elicit  a 

 physiological,  neuroendocrine  stress  response  (Helpman  et  al.,  2017;  Williams,  2007;  Zwolinski, 

 2012).  However,  the  MIST,  using  social  evaluative  threat  by  means  of  (negative)  social 

 comparison,  elicits  both  physiological  and  neuroendocrine  stress  responses,  alongside  a 

 decrease  in  mood  (Allen  et  al.,  2014;  Bosch  et  al.,  2009;  Dedovic  et  al.,  2005;  Dickerson,  2008; 

 Dickerson & Kemeny, 2004). 

 Several  key  acoustic  features,  described  in  the  literature  to  be  responsive  to  stress, 

 were  extracted  from  the  speech  samples  (F0;  fundamental  frequency,  HNR; 

 harmonics-to-noise  ratio,  jitter,  shimmer,  speech  rate,  and  voiced  segment  length).  Prior  results 

 have  been  heterogeneous,  which  is  possibly  due  to  the  use  of  many  different  paradigms  and 

 stressors  which  introduce  noise  rather  than  robustness  in  this  new  modality’s  early,  exploratory 

 stages.  We  tackle  this  by  doing  explicit,  side-by-side  analysis  of  two  often  used  stress 

 paradigms  in  the  same  sample.  In  the  current  study,  during  the  Cyberball  task,  none  of  the 

 tested  acoustic  speech  features  changed  significantly  during  the  stress,  compared  to  the 

 control  phase.  On  the  other  hand,  however,  all  features  except  HNR  and  shimmer  changed  in 

 the  expected  direction  during  the  stress  phase  of  the  MIST.  We  observe  increases  in  F0, 

 consistent  with  literature  Giddens  et  al.,  2013;  Kappen,  Van  Der  Donckt,  et  al.,  2022;  Van 

 Puyvelde  et  al.,  2018),  speech  rate  and  voiced  segment  length,  consistent  with  literature 

 (Giddens  et  al.,  2010,  2013;  Rothkrantz  et  al.,  2004),  and  a  decrease  in  Jitter,  consistent  with 

 literature  (Giddens  et  al.,  2013;  Van  Puyvelde  et  al.,  2018).  The  observed  increase  in  HNR, 

 related  to  stress  in  the  MIST,  did  not  survive  multiple  comparison  corrections,  which  indicates 

 that  the  observed  effect  was  rather  small.  This  is  consistent  with  the  literature,  as  previous 
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 studies  have  reported  mixed  results  or  conflicting  findings  in  HNR  changes  (Giddens  et  al., 

 2013;  Godin  et  al.,  2012;  Godin  &  Hansen,  2015;  Mendoza  &  Carballo,  1998).  However,  the 

 observed  effect  in  the  current  study  follows  the  same  direction  as  our  former  study,  which  did 

 show  a  significant  increase  (Kappen,  Van  Der  Donckt,  et  al.,  2022).  This  consistency  might  be 

 indicative  of  the  true  direction  of  the  effect,  despite  the  small  effect  size  in  the  present  study. 

 Additionally,  no  decrease  was  observed  for  shimmer  during  the  stress  task,  whereas  mixed 

 results  have  been  observed  in  the  literature  (Giddens  et  al.,  2013;  Kappen,  Van  Der  Donckt,  et 

 al.,  2022;  Van  Puyvelde  et  al.,  2018).  The  absence  of  a  significant  change  in  shimmer  during  the 

 stress  phase  of  the  MIST  can  be  related  to  two  things.  First,  it  could  be  related  to  the  speech 

 collection  paradigm  used  in  the  current  study.  We  used  a  semi-guided  speech  paradigm  in 

 which  participants  were  shown  a  screenshot  from  the  task  they  just  completed  and  were 

 prompted  to  describe  it.  For  the  MIST,  that  means  participants  were  shown  a  mathematical 

 puzzle,  similar  to  the  earlier  task,  which  many  participants  would  try  and  solve  out  loud.  This 

 speech  follows  a  less  natural  flow  than  naturally  spoken  speech,  and  as  such  could  affect  the 

 amount  of  changes  in  shimmer.  Second,  which  is  arguably  related  to  the  first,  the  absolute 

 observed  values  for  shimmer  were  rather  low  as  compared  to  former  studies  (Kappen,  Van  Der 

 Donckt,  et  al.,  2022)  indicating  potential  floor  effects.  However,  it  should  be  noted  that  the 

 observed  absolute  shimmer  values  are  consistently  lower  for  the  recordings  in  the  Cyberball 

 paradigm  (see  supplemental  materials).  Nonetheless,  due  to  the  presented  images  being 

 different  between  the  two  speech  collection  paradigms,  no  formal  comparisons  between  the 

 two  should  be  done,  and  our  interpretations  are  limited  to  within-paradigm  changes.  The 

 methodological  choice,  to  have  participants  describe  screenshots  from  the  task  rather  than 

 other,  off-topic  images,  should  also  be  noted  as  the  study’s  biggest  limitation.  The  study’s 
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 objective  was,  first  and  foremost,  to  elicit  stress  using  two  different  psychosocial  stress 

 induction  paradigms.  By  having  participants  describe  unrelated  images  directly  after 

 completing  the  task,  it  can  be  argued  that  they  could  be  distracted  from  the  stressor  and  thus 

 decrease  its  potency,  confounding  the  final  results.  As  such,  follow-up  studies  should  collect 

 speech  samples  using  a  standardized  semi-guided  speech  paradigm  consisting  of  validated 

 images  that  are  congruent  to  psychosocial  paradigms,  to  describe  and  keep  consistent 

 throughout  longitudinal  designs  as  described  in  Van  der  Donckt  and  colleagues  (2023).  It 

 should  also  be  noted  that  the  sample  consisted  of  predominantly  young  adults,  therefore 

 possibly limiting the generalization of our results to the general population. 

 The  current  study  used  two  different  psychosocial  stress  paradigms  that  are  different  in 

 their  stress  responses  (i.e.,  Cyberball;  negative  mood,  MIST;  negative  mood  +  physiological 

 reaction).  As  such,  we  were  able  to  relate  promising  acoustic  and  prosodic  speech  features  to 

 these  distinct  stress  responses.  We  demonstrate  that  most  features  that  are  described  in  the 

 literature  in  relation  to  stress  only  changed  in  the  MIST  (social  evaluative  threat  paradigm),  and 

 not  in  the  Cyberball  (ostracism  paradigm).  These  results  follow  our  observed  changes  in 

 self-report  and  physiological  measures  and  as  such,  we  conclude  that  speech  as  a  biomarker 

 is  indeed  a  promising  method  for  detecting  changes  in  stress  levels.  Speech  is  comparable  to 

 other  validated  methods  (i.e.,  skin  conductance  response  rate  &  self-reported  stress)  as 

 illustrated  by  the  observed  effect  sizes,  in  that  it  does  not  respond  to  mere  changes  in  negative 

 affect, but only when physiological changes occur. 

 This  study  is  the  first  to  demonstrate  how  speech  features  change  due  to  different 

 stress  paradigms  and  corresponding  stressors,  using  a  within-participant  design.  These  results 

 might  explain  the  current  heterogeneity  in  the  literature  with  regard  to  these  speech  features. 
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 We  conclude  that  semi-freely  spoken  speech  (features)  are  promising  for  stress  detection,  and 

 are  not  affected  by  stressors  that  only  evoke  changes  in  negative  mood.  This  further  outlines  its 

 potential  in  real-world  applications,  where  it  appears  increasingly  promising  in  passive,  remote, 

 non-intrusive  tracking  of  major  stressors  in  daily  life  that  can  have  severe  health  implications 

 (Kappen et al., 2023). 

 5.6. Conclusions 

 To  conclude,  we  collected  repeated  semi-guided  speech  fragments  from  participants  in 

 two  different  psychosocial  stress  paradigms,  both  including  active  control  conditions.  We 

 observed  distinct  stress  reactions  in  the  two  paradigms  through  self-reports  and 

 psychophysiological  responses.  A  change  in  self-reported  negative  affect  during  the  Cyberball, 

 and  an  additional  physiological  and  self-reported  stress  reaction  during  the  MIST  were  found. 

 Similar  effects  (i.e.,  effect  during  MIST,  but  not  during  Cyberball)  were  found  for  most  speech 

 features  of  interest;  F0,  voiced  segments  per  second,  mean  voiced  segment  length,  and  jitter, 

 but  not  for  HNR  and  shimmer.  Therefore,  we  conclude  that  these  effects  are  robust  in 

 (semi-)freely  spoken  speech  (as  compared  to  earlier  studies  using  read-out-loud  speech),  and 

 are  sensitive  to  stressors  that  activate  the  HPA  axis,  but  not  to  changes  in  negative  affect 

 alone.  The  difference  in  observed  effects  between  the  two  stressors  possibly  explains  the 

 current  heterogeneity  in  the  literature.  These  results  further  solidify  the  potential  use  of  speech 

 as  a  biomarker  for  stress  level  assessment  in  everyday  settings,  given  its  affordability, 

 non-intrusiveness,  and  ease  of  collection.  Future  studies  should  focus  on  further  testing  the 

 robustness  of  these  results  in  increasingly  naturalistic  settings,  such  as  completely  freely 
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 spoken  speech  and  noisy  environments  while  exploring  a  broader  range  of  speech  features 

 that can be informative in the context of stress. 
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 5.8.3. Supplemental Materials 

 All  data,  corresponding  code,  and  supplementary  information  are  available  at 

 https://osf.io/qf6ck/  and  https://github.com/mitchelkappen/stress_cyberball-mist  . 

 Contents: 
 1)  Exclusion Criteria 
 2)  Complete study flowchart 
 3)  Speech data collection screenshots 
 4)  Self-reports 

 4.1) Positive activating affect 
 4.2) Positive soothing affect 

 5)  ECG/HRV data 
 6)  Software and packages used 

 6.1) R 
 6.2) Python 

 7)  Full models & Anova results 
 7.1) Skin Conductance Response Rate (SCRR) 
 7.2) Negative Affect 
 7.3) Self-Reported Stress 
 7.4) Fundamental Frequency (F0) 
 7.5) Voiced segments per second 
 7.6) Voiced segment length 
 7.7) Harmonics-to-noise ratio (HNR) 
 7.8) Shimmer 
 7.9) Jitter 
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 5.8.3.1. Exclusion Criteria 

 Participants were not allowed to enroll in the study if they met any of the following criteria. 
 Some of the criteria were directly related to the collection of EEG: 

 ●  Left-handed 
 ●  Born before 1977 
 ●  Born after 2003 
 ●  Personal or family history of epilepsy 
 ●  Recent neurosurgical procedures 
 ●  Pacemaker or other electronic implants 
 ●  Inner ear prosthesis 
 ●  Metal objects or magnetic objects in the brain or around the head (only removable 

 earrings & piercings are allowed) 
 ●  Pregnancy 
 ●  A current depressive episode 
 ●  Other psychiatric disorders 
 ●  Skin condition on the head 
 ●  Current addiction 
 ●  Current substance abuse 
 ●  Current use of psychotropic medication 
 ●  Eye disease(s) 
 ●  Heart, respiratory, or neurological problems 
 ●  Participated in the EEG study "predicting future success" 
 ●  Psychology students 
 ●  Dreadlocks 
 ●  Tightly curled hair 
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 5.8.3.2. Complete study flowchart 
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 5.8.3.3. Speech data collection screenshots 

 All speech trials were preceded by the following screen: 

 Translation in English: 
 “Now you will describe an image again. The image will be a representation of the task 
 you just performed. Describe everything you see, what comes to mind, and how you feel 
 or felt about it. 

 The image appears when you press the spacebar. This will also start the audio 
 recording. After pressing the spacebar, start describing what you see. 

 Don't worry too much if you get stuck, try to do it naturally as if you are describing the 
 image to someone who cannot see it. The goal is to describe for at least 60 seconds per 
 image. The image will briefly flash when 60 seconds have passed so that you know you 
 can finish up. 
 When you have finished your description, press the spacebar again and proceed to the 
 next screen. 

 Press the spacebar to see the image and start describing it aloud.” 

 All screenshot description trials looked identical per participant. After describing for 60 
 seconds, a prompt appeared saying “You can now press the space bar to stop the audio 
 recording”. 
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 Cyberball 

 Inclusion  : 

 Exclusion: 
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 MIST 

 Control  : 

 Stress  : 
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 5.8.3.4. Self-reports 

 5.8.3.4.1. Positive activating affect 

 Anova: 
 Analysis of Deviance Table (Type III Wald chisquare tests) 

 Response: VAS_PAA 
 Chisq Df Pr(>Chisq) 

 (Intercept)      318.0398  1  < 2.2e-16 *** 
 fileNum           12.6142  1  0.0003828 *** 
 taskType           1.7137  1  0.1905012 
 fileNum:taskType  12.5367  1  0.0003990 *** 
 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 Emmeans Contrasts: 
 taskType = Cyberball: 
 contrast                   estimate   SE  df t.ratio p.value 
 Control Task - Stress Task   11.672 2.24 170   5.207  <.0001 

 taskType = MIST: 
 contrast                   estimate   SE  df t.ratio p.value 
 Control Task - Stress Task    0.018 2.41 170   0.007  0.9941 

 Degrees-of-freedom method: kenward-roger 

 Effect Sizes: 
 taskType = Cyberball: 
 contrast                     effect.size    SE  df lower.CL upper.CL 
 (Control Task - Stress Task)     0.92052 0.182 170    0.562    1.279 

 taskType = MIST: 
 contrast                     effect.size    SE  df lower.CL upper.CL 
 (Control Task - Stress Task)     0.00142 0.190 170   -0.374    0.377 

 sigma used for effect sizes: 12.68 
 Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
 Confidence level used: 0.95 

 Figure: 
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 5.8.3.4.2. Positive soothing affect 

 Anova: 
 Analysis of Deviance Table (Type III Wald chisquare tests) 

 Response: VAS_PSA 
 Chisq Df Pr(>Chisq) 

 (Intercept)      925.4036  1  < 2.2e-16 *** 
 fileNum           35.1251  1  3.092e-09 *** 
 taskType          73.6405  1  < 2.2e-16 *** 
 fileNum:taskType   1.5812  1     0.2086 
 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 Emmeans Contrasts: 
 taskType = Cyberball: 
 contrast                   estimate   SE  df t.ratio p.value 
 Control Task - Stress Task     9.42 2.75 170   3.428  0.0008 

 taskType = MIST: 
 contrast                   estimate   SE  df t.ratio p.value 
 Control Task - Stress Task    14.50 2.96 171   4.906  <.0001 

 Degrees-of-freedom method: kenward-roger 
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 Effect Sizes: 
 taskType = Cyberball: 
 contrast                     effect.size    SE  df lower.CL upper.CL 
 (Control Task - Stress Task)       0.606 0.179 170    0.253    0.959 

 taskType = MIST: 
 contrast                     effect.size    SE  df lower.CL upper.CL 
 (Control Task - Stress Task)       0.932 0.195 171    0.548    1.317 

 sigma used for effect sizes: 15.55 
 Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
 Confidence level used: 0.95 

 Figure: 

 5.8.3.5. ECG/HRV data 

 Anova: 
 Analysis of Deviance Table (Type III Wald chisquare tests) 

 Response: rmssd 
 Chisq Df Pr(>Chisq) 

 (Intercept)      181.7315  1     <2e-16 *** 
 fileNum            2.7029  1     0.1002 
 taskType           0.9538  1     0.3288 
 fileNum:taskType   0.0224  1     0.8810 
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 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 Emmeans Contrasts: 
 taskType = Cyberball: 
 contrast                   estimate   SE  df t.ratio p.value 
 Control Task - Stress Task    -3.78 2.90 158  -1.302  0.1947 

 taskType = MIST: 
 contrast                   estimate   SE  df t.ratio p.value 
 Control Task - Stress Task    -3.15 3.05 158  -1.034  0.3028 

 Degrees-of-freedom method: kenward-roger 

 Effect Sizes: 
 taskType = Cyberball: 
 contrast                     effect.size    SE  df lower.CL upper.CL 
 (Control Task - Stress Task)      -0.241 0.185 158   -0.607    0.125 

 taskType = MIST: 
 contrast                     effect.size    SE  df lower.CL upper.CL 
 (Control Task - Stress Task)      -0.201 0.195 158   -0.585    0.183 

 sigma used for effect sizes: 15.68 
 Degrees-of-freedom method: inherited from kenward-roger when re-gridding 
 Confidence level used: 0.95 

 Figure: 
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 5.8.3.6. Software and packages used 

 For full package and version info see: 

 5.8.3.6.1. R 

 https://github.com/mitchelkappen/stress_cyberball-mist/blob/main/supplemental%20material/ 
 package%20and%20version%20info/Rsession_info.txt 

 5.8.3.6.2. Python 

 https://github.com/mitchelkappen/stress_cyberball-mist/blob/main/supplemental%20material/ 
 package%20and%20version%20info/poetry.lock 

 5.8.3.7. Full models & Anova results 

 Here you will find each model specification with the Anova results. For more details, feel free to 
 run our out-of-the-box code in allAnalysis.R 
 We display all comparisons, both within-paradigm as between-paradigm for completeness 
 purposes. However, it should be noted that no weight should be given to the 
 between-paradigm comparisons due to the inherent differences in the paradigms and the 
 images that were described. 
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 5.8.3.7.1. Skin Conductance Response Rate (SCRR) 

 Formula:  SCRR ~ fileNum * taskType + (1|participantNum) 
 Anova: 
 Analysis of Deviance Table (Type III Wald chisquare tests) 

 Response: SCRR 
 Chisq Df Pr(>Chisq) 

 (Intercept)      194.5865  1  < 2.2e-16 *** 
 fileNum           15.1337  1  0.0001002 *** 
 taskType          94.3411  1  < 2.2e-16 *** 
 fileNum:taskType   2.6339  1  0.1046055 
 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 Figure: 
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 5.8.3.7.2. Negative Affect 

 Formula:  VAS_NA ~ fileNum * taskType + (1|participantNum) 
 Anova: 
 Analysis of Deviance Table (Type III Wald chisquare tests) 

 Response: VAS_NA 
 Chisq Df Pr(>Chisq) 

 (Intercept)      63.7027  1  1.447e-15 *** 
 fileNum          17.5548  1  2.792e-05 *** 
 taskType          9.6001  1   0.001946 ** 
 fileNum:taskType  0.2176  1   0.640868 
 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 Figure: 
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 5.8.3.7.3. Self-Reported Stress 

 Formula:  VAS_Stress ~ fileNum * taskType + Sex + (1|participantNum) 
 Anova: 
 Analysis of Deviance Table (Type III Wald chisquare tests) 

 Response: VAS_Stress 
 Chisq Df Pr(>Chisq) 

 (Intercept)      88.0639  1  < 2.2e-16 *** 
 fileNum          14.3127  1  0.0001548 *** 
 taskType         49.5210  1  1.963e-12 *** 
 Sex               7.7876  1  0.0052607 ** 
 fileNum:taskType  7.8061  1  0.0052071 ** 
 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 Figure: 
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 5.8.3.7.4. Fundamental Frequency (F0) 

 Formula:  F0semitoneFrom27.5Hz_sma3nz_amean ~ fileNum  * taskType + Sex + 
 (1|participantNum) 
 Anova: 
 Analysis of Deviance Table (Type III Wald chisquare tests) 

 Response: F0semitoneFrom27.5Hz_sma3nz_amean 
 Chisq Df Pr(>Chisq) 

 (Intercept)      8108.1415  1  < 2.2e-16 *** 
 fileNum             6.7286  1   0.009488 ** 
 taskType            0.0704  1   0.790737 
 Sex               196.7378  1  < 2.2e-16 *** 
 fileNum:taskType    2.0777  1   0.149464 
 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 Figure: 
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 5.8.3.7.5. Voiced segments per second 

 Formula:  VoicedSegmentsPerSec ~ fileNum * taskType  + (1|participantNum) 
 Anova: 
 Analysis of Deviance Table (Type III Wald chisquare tests) 

 Response: VoicedSegmentsPerSec 
 Chisq Df Pr(>Chisq) 

 (Intercept)      2167.2753  1  < 2.2e-16 *** 
 fileNum            18.7850  1  1.463e-05 *** 
 taskType            0.6441  1  0.4222239 
 fileNum:taskType   13.1971  1  0.0002804 *** 
 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 Figure: 
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 5.8.3.7.6. Voiced segment length 

 Formula:  MeanVoicedSegmentLengthSec ~ fileNum * taskType  + Sex + (1|participantNum) 
 Anova: 
 Analysis of Deviance Table (Type III Wald chisquare tests) 

 Response: MeanVoicedSegmentLengthSec 
 Chisq Df Pr(>Chisq) 

 (Intercept)      1237.4735  1    < 2e-16 *** 
 fileNum             3.0059  1    0.08296 . 
 taskType           76.3133  1    < 2e-16 *** 
 Sex                 0.0049  1    0.94408 
 fileNum:taskType    4.4213  1    0.03549 * 
 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 Figure: 
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 5.8.3.7.7. Harmonics-to-noise ratio (HNR) 

 Formula:  HNRdBACF_sma3nz_amean ~ fileNum * taskType  + Sex + (1|participantNum) 
 Anova: 
 Analysis of Deviance Table (Type III Wald chisquare tests) 

 Response: HNRdBACF_sma3nz_amean 
 Chisq Df Pr(>Chisq) 

 (Intercept)      2204.9603  1    < 2e-16 *** 
 fileNum             6.2719  1    0.01227 * 
 taskType            0.8847  1    0.34691 
 Sex               127.7845  1    < 2e-16 *** 
 fileNum:taskType    0.7817  1    0.37663 
 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 Figure: 
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 5.8.3.7.8. Shimmer 

 Formula:  shimmerLocaldB_sma3nz_amean ~ fileNum * taskType  + Sex + (1|participantNum) 
 Anova: 
 Analysis of Deviance Table (Type III Wald chisquare tests) 

 Response: shimmerLocaldB_sma3nz_amean 
 Chisq Df Pr(>Chisq) 

 (Intercept)      2617.9744  1  < 2.2e-16 *** 
 fileNum             1.5846  1     0.2081 
 taskType           25.8647  1  3.662e-07 *** 
 Sex                 0.2809  1     0.5961 
 fileNum:taskType    1.3453  1     0.2461 
 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 Figure: 
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 5.8.3.7.9. Jitter 

 Formula:  jitterLocal_sma3nz_amean ~ fileNum * taskType  + (1|participantNum) 
 Anova: 
 Analysis of Deviance Table (Type III Wald chisquare tests) 

 Response: jitterLocal_sma3nz_amean 
 Chisq Df Pr(>Chisq) 

 (Intercept)      1012.8052  1  < 2.2e-16 *** 
 fileNum            11.1673  1  0.0008325 *** 
 taskType            2.8528  1  0.0912171 . 
 fileNum:taskType    2.1522  1  0.1423676 
 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 Figure: 
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 6.1. Abstract 

 Health  research  and  health  care  alike  are  presently  based  on  infrequent  assessments 

 that  provide  an  incomplete  picture  of  clinical  functioning.  Consequently,  opportunities  to 

 identify  and  prevent  health  events  before  they  occur  are  missed.  New  health  technologies  are 

 addressing  these  critical  issues  by  enabling  the  continual  monitoring  of  health-related 

 processes  using  speech.  These  technologies  are  a  great  match  for  the  healthcare  environment 

 because  they  make  high-frequency  assessments  non-invasive  and  highly  scalable.  Indeed, 

 existing  tools  can  now  extract  a  wide  variety  of  health-relevant  biosignals  from  smartphones  by 

 analyzing  a  person’s  voice  and  speech.  These  biosignals  are  linked  to  health-relevant  biological 

 pathways  and  have  shown  promise  in  detecting  several  disorders,  including  depression  and 

 schizophrenia.  However,  more  research  is  needed  to  identify  the  speech  signals  that  matter 

 most,  validate  these  signals  against  ground-truth  outcomes,  and  translate  these  data  into 

 biomarkers  and  just-in-time  adaptive  interventions.  We  discuss  these  issues  herein  by 

 describing  how  assessing  everyday  psychological  stress  through  speech  can  help  both 

 researchers  and  health  care  providers  monitor  the  impact  that  stress  has  on  a  wide  variety  of 

 mental  and  physical  health  outcomes,  such  as  self-harm,  suicide,  substance  abuse, 

 depression,  and  disease  recurrence.  If  done  appropriately  and  securely,  speech  is  a  novel 

 digital  biosignal  that  could  play  a  key  role  in  predicting  high-priority  clinical  outcomes  and 

 delivering tailored interventions that help people when they need it most. 
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 6.2. Introduction 

 Many  patients  experiencing  mental  health  problems  today  do  not  receive  adequate 

 treatment  (Thornicroft  et  al.,  2017;  WHO,  2021).  Moreover,  among  those  receiving  treatment, 

 the  modal  number  of  sessions  attended  for  psychotherapy  and  medication  treatment  is  one, 

 with  little  follow-up  thereafter  (e.g.,  Connolly  Gibbons  et  al.,  2011).  As  a  result,  patients  are  not 

 presently  being  followed  in  a  way  that  could  help  detect  increases  in  symptoms  or  prevent 

 relapse.  To  address  these  issues,  providers  are  increasingly  using  ecological  momentary 

 assessments,  phone  check-ins,  and  automatic  chatbots  to  monitor  patients  to  monitor 

 symptoms  and  prevent  health  emergencies  from  occurring.  These  monitoring  practices  are 

 invasive  and  burdensome  for  both  patients  and  providers,  though,  and  they  are  also  subject  to 

 self-report  biases  caused  by  social  desirability,  unawareness,  and  stigma,  thus  limiting  their 

 precision and utility. 

 Passive  data  collection  bypasses  these  challenges  as  it  uses  technology  to  monitor 

 patient  progress.  These  technological  devices  include  smartphone  pedometers  to  track 

 physical  activity  and  phone  apps  to  track  sleep  quality,  social  activity  and  engagement,  and 

 emotional  words  typed.  Passive  data  collection  modalities  that  measure  health-relevant 

 biological  activity,  or  biosignals  ,  are  particularly  informative  as  they  index  the  activity  of 

 systems  that  are  directly  relevant  for  health  and  wellbeing.  Consequently,  they  hold  great 

 promise  for  helping  both  patients  and  health  care  providers  catch  mental  health  emergencies 

 before  they  occur.  Below,  we  describe  what  we  believe  is  one  of  the  most  promising 

 health-relevant biosignals to monitor: speech. 
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 6.3.  Speech  Contains  Critical  Psychosocial 

 Information 

 When  people  talk,  their  voice  and  language  contain  more  information  than  the  mere 

 messages  they  are  conveying.  Although  word  selection  is  important,  it  can  be  limited  or  biased 

 by  a  lack  of  awareness  or  trust,  inability  to  access  emotions,  shame,  and  more.  In  contrast, 

 from  the  speech  signal  itself,  we  can  now  get  metrics  of  emotion  and  human  functioning  that 

 are  not  subject  to  these  biases  (Slavich  et  al.,  2019).  Examples  include  phonetic  markers  due  to 

 physiological  changes  such  as  muscle  tension  and  semantic  markers  due  to  psychological 

 changes  such  as  increased  use  of  first-person  singular  pronouns.  These  markers  contain 

 valuable,  health-relevant  information.  Moreover,  the  collection  and  analysis  of  these  data  come 

 with  unique  advantages  over  and  above  self-reported  data.  For  example,  high-quality 

 microphones  are  now  present  in  all  smartphones,  making  data  collection  easy,  and 

 smartphones  can  contain  apps  that  make  data  storage,  analysis,  and  transmission  fast, 

 immediate,  automated,  and  secure.  Consequently,  assessing  speech  could  provide  a  highly 

 scalable,  accessible,  and  non-invasive  strategy  for  monitoring  psychosocial  functioning  and 

 delivering just-in-time adaptive interventions (JITAIs) that help people when they need it most. 

 Once  biosignals  are  translated  into  health-relevant  indices,  they  have  the  potential  to 

 become  biomarkers  of  stress  and  health  that  can  be  collected  passively  and  analyzed 

 automatically,  and  thus  help  predict  the  emergence  and/or  recurrence  of  high-priority  clinical 

 outcomes.  In  addition  to  improving  human  health  and  resilience,  therefore,  speech  can  help 
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 relieve  pressure  on  the  healthcare  system.  To  this  extent,  high-frequency  patient  monitoring  has 

 shown  to  be  promising  in  predicting  self-harm,  suicide,  depression,  bipolar  disorder, 

 schizophrenia,  alcohol  and  substance  abuse,  and  more  (Colombo  et  al.,  2019;  Faurholt-Jepsen 

 et  al.,  2018;  Gee  et  al.,  2020;  Mote  &  Fulford,  2020;  Serre  et  al.,  2015).  Moreover,  JITAIs  that 

 use  smartphones  and  wearables  to  provide  tailored  support  to  people  at  just  the  right  time 

 have  been  found  to  be  useful  in  managing  mental  illness,  alcohol  use,  smoking,  obesity,  and 

 suicide  (Nahum-Shani  et  al.,  2018).  To  date,  JITAIs  have  not  used  speech  data  despite  it  being 

 readily  available,  but  making  this  connection  is  not  difficult.  Ultimately,  expanding 

 high-frequency  patient  monitoring  and  risk  detection  to  include  voice  recordings  could  help 

 enable the delivery of life-saving interventions. 

 Figure  1.  A  visual  representation  of  the  added  value  of  speech  analysis  versus  ecological  momentary 

 assessment  (EMA)  in  tracking  stress  levels.  Although  peoples’  stress  levels  change  continuously  over 

 time,  tracking  these  levels  using  EMA  by  phone  (blue  line)  is  intermittent,  burdensome,  and  subject  to 

 several  self-report  biases,  thus  limiting  its  precision  and  clinical  utility.  In  contrast,  tracking  stress  and 
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 other  health-relevant  psychosocial  processes  using  speech  analysis  (orange  line)  can  be  done 

 non-invasively  and  continuously,  and  can  in  turn  be  used  to  both  detect  stressful  life  events  (black 

 circles)  and  deliver  just-in-time  adaptive  interventions  (JITAIs)  precisely  when  individuals  need  them 

 most. This figure has been designed using assets from Freepik.com. 

 6.4. Stress and Speech 

 In  terms  of  health-relevant  processes  to  monitor,  several  exist,  but  the  highest  priority  is 

 probably  stress  (Slavich,  2016).  Stress  is  a  strong  predictor  of  morbidity  across  a  variety  of 

 diseases  and  is  associated  with  9  out  of  10  leading  causes  of  death  in  the  U.S.  today  (Bhushan 

 et  al.,  2020;  See  Table  1).  Measuring  stress  using  speech  overcomes  several  limitations  in  the 

 assessment  of  stress,  including  self-reporting  biases  and  the  need  for  real-time  assessment. 

 Moreover,  these  data  can  prompt  the  delivery  of  evidence-based  JITAIs  for  stress,  of  which 

 there are several (Sarker et al., 2017). 

 Early  research  on  stress  and  speech  is  promising.  For  example,  this  work  has  identified 

 key  acoustic  features  of  speech  (Van  Puyvelde  et  al.,  2018;  see  also  Kappen,  Van  der  Donckt, 

 et  al.,  2022)  and  how  their  associations  are  modulated  by  stress  (Kappen,  Hoorelbeke,  et  al., 

 2022).  In  turn,  these  biosignals  have  been  found  to  reliably  predict  emotion,  heart  rate, 

 respiration,  and  cortisol  responses  (Baird  et  al.,  2021),  and  peoples’  experience  of  everyday 

 work  stressors  (Langer  et  al.,  2022;  see  also  Lu  et  al.,  2012).  Likewise,  a  recent  systematic 

 review  of  127  speech  acoustic  studies  synthesized  research  describing  the  use  of  speech  for 

 detecting  a  variety  of  psychiatric  disorders,  including  depression,  schizophrenia,  bipolar 

 disorder,  posttraumatic  stress  disorder,  anxiety,  anorexia,  obsessive-compulsive  disorder,  and 

 bulimia  (Low  et  al.,  2020).  Despite  promising  results  with  regard  to  the  identification  of  stress, 

 263 



 limited  research  has  translated  this  information  into  JITAIs  for  managing  everyday  stress,  where 

 it could have huge benefits for both patients and caretakers. 

 Table 1 
 Role of stress in the top 10 causes of death in the United States. 

 6.5. Real-world Validation and Application 

 Looking  forward,  more  research  is  needed  to  validate  speech  against  clinical  outcomes, 

 and  in  this  context,  focusing  on  disease  recurrence  should  be  a  top  priority  for  a  few  reasons. 

 First,  these  patients  already  have  a  demonstrated  disease  risk  (often  accompanied  by 

 decreased  stress  resilience)  and,  therefore,  a  reason  to  be  followed.  Second,  early  detection 
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 and  intervention  in  these  patients  would  have  substantial  cost  savings,  help  prevent  complete 

 relapse  from  occurring,  and  lead  to  less  time-intensive  treatments.  Finally,  these  patients  are 

 already connected to clinical care, making immediate intervention easier and more likely. 

 6.6. Ethical and Legal Issues 

 Ultimately,  the  real-world  implementation  of  speech  data  collection  comes  with  multiple 

 privacy  and  ethical  concerns,  and  these  issues  must  be  taken  seriously  to  maximize  the 

 potential  benefits  and  minimize  the  risks  associated  with  this  emerging  technology.  As 

 described  by  Slavich  et  al.  (2019),  risk  minimization  should  include,  at  minimum:  (a)  telling 

 users  what  devices  are  sampling,  assessing,  and/or  transmitting  speech,  and  providing 

 examples  of  possible  risks;  (b)  enabling  users  to  digitally  control  the  listening  function  of 

 devices;  (c)  enabling  users  to  physically  control  the  listening  function  of  devices  (e.g.,  using  the 

 audio  equivalent  of  a  physical  lens  cap);  (d)  allowing  users  to  manage  access  to  their  speech 

 data;  (e)  permitting  users  to  opt  in  to  having  devices  in  their  environment;  and  (f)  allowing  users 

 to  opt  out  of  having  their  speech  logged  or  analyzed.  Several  high-profile  breaches  of  speech 

 data  have  occurred  (see  Slavich  et  al.,  2019),  and  when  it  comes  to  these  issues,  we  believe 

 user data protection must come first. 

 6.7. Conclusion 

 In  conclusion,  speech  can  drive  the  next  frontier  in  monitoring  health  and  delivering 

 JITAIs  to  prevent  disease  recurrence  and  foster  resilience.  Looking  forward,  more  research  is 
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 needed  to  validate  speech  against  ground-truth  outcomes,  including  clinical  functioning, 

 diagnoses,  biomarkers,  and  subjective  self-reported  responses  (Sarker  et  al.,  2017).  Focusing 

 on  stress  makes  a  lot  of  sense  in  this  context,  as  stress  plays  a  crucial  role  in  the  development 

 and  recurrence  of  numerous  mental  and  physical  health  conditions,  and  can  be  treated  using 

 existing  evidence-based  strategies  (Slavich  &  Auerbach,  2018).  We  already  have  the 

 technological  devices  needed  to  realize  the  promise  of  JITAIs  in  our  hands.  To  solve  some  of 

 the  world’s  biggest  health  challenges,  all  we  need  to  do  is  empower  these  devices  with  the 

 right diagnostic and therapeutic programs. 
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 Chapter  7 

 General Discussion 

 Stress  is  an  everyday  experience,  encountered  by  everyone  on  a  regular  basis.  It 

 emerges  as  the  body's  reaction  to  various  demands  or  threats,  referred  to  as  stressors  ,  which 

 originate  from  a  multitude  of  sources  such  as  financial  issues,  childcare,  interpersonal 

 relationships,  social  gatherings,  or  significant  life  events.  The  growing  prevalence  of  stress  in 

 today's  fast-moving  world  is  closely  associated  with  its  substantial  impact  on  both  physical 

 and mental well-being. 

 Although  stress  can  serve  as  a  normal  and  adaptive  aspect  of  life,  helping  individuals 

 cope  with  challenges  and  motivating  the  pursuit  of  goals,  it  is  essential  to  identify  when  stress 

 becomes  harmful.  Specifically,  chronic  stress  can  result  in  a  wide  range  of  health 

 complications,  including  cardiovascular  disease,  coronary  heart  disease,  anxiety  disorders, 

 depression,  autoimmune  disease,  and  neurodegenerative  disorders.  (Bhushan  et  al.,  2020; 

 Brosschot  et  al.,  2017;  S.  Cohen  et  al.,  2007;  Juster  et  al.,  2010;  Kappen  et  al.,  2023;  Slavich  & 

 Irwin,  2014).  It  has  also  been  connected  to  most  leading  causes  of  death  in  the  US,  as  shown 

 in Table 1 (Kappen et al., 2023). 
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 Given  the  significant  impact  of  stress  on  our  well-being,  accurately  and  frequently 

 measuring  stress  levels  is  vital.  As  such,  many  different  stress  measurement  methods  have 

 been  developed,  each  with  its  own  strengths  and  weaknesses.  Therefore,  the  pressing  need  for 

 developing  innovative  and  accessible  stress  measurement  methods  persists.  Increasingly, 

 measuring  stress  from  one’s  speech  has  gained  attention.  Specifically,  the  production  of 

 speech  involves  multiple  physiological  systems  of  the  body  that  also  play  a  crucial  role  in 

 physical  stress  reactions  (Slavich  et  al.,  2019;  Van  Puyvelde  et  al.,  2018),  including  multiple 

 cranial  and  spinal  nerves  (Duffy,  2000),  multiple  subcortical  and  cortical  brain  regions  (Carlson 

 &  Birkett,  2017;  Jürgens,  2002),  and  cardiorespiratory  processes  (Câmara  &  Griessenauer, 

 2015; Monkhouse, 2005). 

 Measuring  stress  through  speech  would  come  with  many  perks,  such  as  it  being 

 affordable,  accessible,  non-intrusive,  swift,  applicable  in  natural  settings,  and  low  effort  for 

 participants,  which  makes  it  a  good  option  for  high-frequency  and  passive  monitoring  of 

 stressors  in  daily  life.  Therefore,  researchers  have  tried  to  unveil  which  features  of  one’s  speech 

 respond  to  stress  specifically  and  in  what  context.  However,  there  has  been  considerable 

 heterogeneity  in  the  observed  results,  which  can  be  attributed  to  various  limitations  in  their 

 designs  as  described  in  Chapter  1  (Giddens  et  al.,  2013;  Slavich  et  al.,  2019;  Van  Puyvelde  et 

 al., 2018). 
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 Table 1 

 Role of stress in the top 10 causes of death in the United States. 

 Disease  Role of stress 
 Heart disease  Stress causes cardiovascular hyperreactivity and stress-induced hyperactivation of the 

 hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS), both 
 related to coronary heart disease as acute coronary syndromes. Stress causes inflammation, 
 increases in cholesterol, depression, risk of smoking, and metabolic syndrome, all strongly 
 related to heart disease (Bhushan et al., 2020; Bunker et al., 2003; Wirtz & von Känel, 2017). 

 Cancer  Persistent activation of the HPA axis impairs the immune response and, together with chronic 
 inflammation, heightens the risk of cancer and promotes the spread of cancer after 
 development (Bhushan et al., 2020; Grivennikov et al., 2010; Reiche et al., 2004). 

 Accidents (unintentional 
 injuries) 

 Stress can impair cognitive function, reaction time, and decision-making, which can increase 
 the risk of accidents. Moreover, chronic and early life stress leads to more risk seeking 
 behavior, further increasing the risk of accidents. 

 Chronic lower respiratory 
 diseases 

 Stress can weaken the immune system and make it more difficult for the body to fight off 
 infections, which can increase the risk of respiratory diseases. The exact associations with 
 stress need to be further studied, but are strongly present (Hughes et al., 2017; Petruccelli et 
 al., 2019). 

 Stroke  Acute stress can increase the risk of blood clots, leading to a higher likelihood of heart attacks 
 and strokes due to changes in endothelial cell function, arterial stiffness, vessel wall damage, 
 elevated blood viscosity, and hypercoagulability. Stress also increases the risk of strokes 
 through the metabolic syndrome (Bhushan et al., 2020) 

 Alzheimer's disease or 
 dementia 

 Although the reasons for neuropsychiatric disorders are multifaceted and intricate, alterations 
 to the brain's threat response, pain perception mechanisms, motivation and reward pathways, 
 and impulse control are linked to toxic stress and are considered to play a part in increasing the 
 likelihood of these disorders. Also, accelerated cellular aging as a component of toxic stress 
 physiology may lead to higher rates of Alzheimer’s disease and other types of dementia 
 (Bhushan et al., 2020). 

 Diabetes  Similarly to heart disease and stroke, diabetes is a risk factor of stress through the metabolic 
 syndrome. Moreover, stress affects glucose regulation, insulin resistance, and insulin secretion, 
 with effects even occurring intergenerationally (Bhushan et al., 2020; Lloyd et al., 2005). 

 Influenza and pneumonia  Unknown 
 Kidney disease  Stress increases the risk of kidney disease and is believed to be increased by other factors, 

 such as heart disease, obesity, diabetes, and high blood pressure, which can also cause 
 damage to the kidneys. It is suggested that dysregulation of endothelin-1, a molecule involved 
 in regulating blood pressure and arterial stiffness, may be an underlying mechanism through 
 which stress and other risk factors contribute to the development of both cardiovascular and 
 kidney disease (Bhushan et al., 2020; Bruce et al., 2016). 

 Suicide (attempts)  In addition of stress functioning through depression, anxiety, and other mental health problems 
 to affect risk for suicide, multiple models of suicide include stress directly. It is proposed that 
 suicidal behavior is a result of an interaction between acutely stressful life events and a 
 susceptibility to suicidal behavior (Bhushan et al., 2020; Van Heeringen, 2012). 

 The  primary  aim  of  this  dissertation  was  to  explore  the  potential  of  speech  as  a  measure 

 of  stress  by  addressing  these  limitations  in  the  current  literature.  This  is  achieved  through  a 
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 series  of  studies  that  employ  large,  statistically-powered  studies,  where  we  elicited  stress  using 

 psychosocial  stressors,  in  non-actor  participants,  validate  stress  inductions  using  self-reports 

 and/or  physiological  responses,  use  within-participant  designs,  including  neutral  or  active 

 control  condition  speech  recordings,  ensure  consistency  in  the  testing  environment  and 

 microphone quality, and focus on speech features with a scientific basis. 

 In  the  following  sections,  I  will  first  briefly  summarize  the  main  findings  of  the  performed 

 studies  (  section  7.1.  ).  Next,  I  will  discuss  the  theoretical  implications  by  framing  these  results 

 within  the  context  of  the  present  literature  (  section  7.2.  ).  Following,  I  will  discuss  the  potential 

 practical  and  clinical  implications  of  the  current  findings  (  section  7.3.  ),  including  specifically 

 discussing  implications  for  continuous  monitoring  settings  (  section  7.4.  ).  Then,  the  limitations 

 of  the  studies  from  this  dissertation  as  well  as  the  field  of  speech  as  a  whole  will  be  discussed 

 (  section  7.5.  ).  Lastly,  suggestions  for  future  research  are  proposed  (  section  7.6.  )  as  well  as 

 stating the dissertation’s general conclusions (  section  7.7.  ). 

 7.1. General overview of the findings 

 In  the  first  study,  Chapter  2,  we  collected  speech  before  and  after  exposing 

 participants  to  stress  (using  the  MIST),  and  extracted  core  speech  features  as  they  are 

 described  in  the  literature.  By  applying  network  analysis,  we  found  that  the  networks  of  how 

 these  speech  features  are  connected  remain  identical  before  and  after  the  stress  induction. 

 When  analyzing  the  delta  (change;  post-  vs  pre-stressor)  network,  we  discovered  a 

 comprehensive  network  that  shows  that  changes  in  any  feature  were  related  to  changes  in 
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 self-reported  negative  affect—an  actual  index  of  how  stressed  someone  was—through 

 changes  in  vocal  jitter.  This  study  provides  insights  into  the  complex  relationships  between 

 different  speech  parameters  in  the  context  of  psychosocial  stress,  highlighting  the  central  role 

 of  harmonic-to-noise  ratio  (HNR)  in  the  network  and  the  potential  importance  of  vocal  jitter  in 

 its  relation  to  self-reported  negative  affect.  These  results  necessitate  and  enable  the 

 investigation  of  stress  effects  on  these  speech  features  in  a  confirmatory  manner.  Moreover, 

 the  following  chapters  should  incorporate  the  use  of  active  control  blocks  to  further  isolate  the 

 impact of stress on speech. 

 In  the  second  experimental  study,  Chapter  3,  participants  engaged  in  a  cognitively 

 challenging  task  and  received  neutral  or  negative  comparative  feedback  on  their  performance. 

 We  used  a  within-subject  design  and  validated  a  successful  stress  induction  with  self-reports 

 and  physiological  measures.  Our  analysis  of  acoustic  speech  features,  from  read-out-loud 

 speech,  revealed  a  significant  increase  in  Fundamental  Frequency  (F0)  and  harmonics-to-noise 

 ratio  (HNR),  and  a  significant  decrease  in  shimmer  during  the  negative  feedback  condition. 

 These  strong  results,  generated  using  a  validated  stress  paradigm,  an  active  control  condition 

 (i.e.,  neutral  vs  negative  socially  comparative  feedback),  a  high-quality  microphone,  and 

 validated  self-reports  and  physiological  measures,  contribute  to  the  understanding  of  stress 

 effects  on  specific  acoustic  speech  features  in  a  well-controlled  but  ecologically-valid  stress 

 setting.  This  study  is  a  solid  step  toward  the  generalization  of  these  findings  to  real-life  settings. 

 Subsequent  chapters  should  move  towards  more  realistic  settings  by  incorporating  a  greater 

 diversity  of  stressors  to  examine  the  robustness  and  sensitivity  of  the  speech  features  and 

 stress, as well as utilizing speech samples that better resemble everyday speech. 
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 In  Chapter  4  ,  we  developed  the  Ghent  Semi-spontaneous  Speech  Paradigm  (GSSP)  to 

 enable  researchers  to  capture  unscripted  speech  data  in  affective-behavioral  research.  The 

 GSSP  allows  for  flexible  speech  acquisition  durations,  non-interfering  tasks,  experimental 

 control,  prosodic  richness,  and  minimal  human  interference  for  scalability.  We  validated  the 

 GSSP  through  an  online  task,  comparing  it  to  a  fixed-text  read-out-loud  task.  Acoustic  analysis 

 revealed  trends  consistent  with  the  targeted  speech  styles  (unscripted  spontaneous  speech  vs. 

 scripted  read-aloud  speech),  and  a  speech  style  classification  model  achieved  a  balanced 

 accuracy  of  83%  on  within-dataset  validation,  indicating  separability  between  the  GSSP  and 

 read-out-loud  speech  task.  Therefore,  the  GSSP  is  a  valuable  tool  for  capturing  spontaneous 

 speech  in  longitudinal  ambulatory  behavioral  studies  and  laboratory  studies,  advancing  the 

 field  toward  utilizing  speech  as  a  biomarker  in  everyday  settings.  Specifically,  we  propose  that 

 the  GSSP  should  be  the  advised  method  of  collecting  speech  in  experimental  settings, 

 generating  results  that  would  be  directly  implementable  to  real-world  scenarios,  as  opposed  to 

 read-out-loud  speech,  which  is  less  natural.  Thus,  this  paradigm  allows  us  to  obtain  more 

 ecologically valid speech samples in our subsequent chapters and studies. 

 Chapter  5  investigated  the  effects  of  two  distinct  psychosocial  stress  paradigms 

 (Cyberball  and  MIST)  on  semi-guided  speech  features.  We  observed  that  only  negative  affect 

 increased  during  Cyberball,  while  self-reported  stress,  and  skin  conductance  response  rate,  in 

 addition  to  negative  affect  increased  during  MIST.  This  is  the  first  study  using  a  multi-day, 

 multi-paradigm,  within-participant  experimental  setup,  and  collected  speech  through  a 

 semi-guided  picture  description  paradigm,  similar  to  the  GSSP.  Fundamental  frequency  (F0), 

 speech  rate,  and  jitter  significantly  changed  during  MIST,  but  not  Cyberball,  while  HNR  and 
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 shimmer  showed  no  expected  changes.  These  observed  changes  in  most  speech  features 

 follow  the  self-reported  and  physiological  reactions  (i.e.,  responsive  during  MIST,  but  not 

 Cyberball).  The  results  indicate  that  observed  speech  features  are  robust  in  semi-guided 

 speech  (as  found  in  previous  studies  using  read-out-loud  speech)  and  sensitive  to  stressors 

 eliciting  additional  physiological  stress  responses,  rather  than  solely  decreases  in  negative 

 affect.  We  can  relate  these  results  to  the  fact  that  the  production  of  speech  involves  multiple 

 physiological  systems  of  the  body  that  are  specifically  relevant  to  the  physical  stress 

 component  (Câmara  &  Griessenauer,  2015;  Monkhouse,  2005;  Slavich  et  al.,  2019;  Van 

 Puyvelde  et  al.,  2018).  These  differences  between  stressors  may  explain  the  heterogeneity  in 

 the  literature  and  further  support  the  potential  of  speech  as  a  biomarker  for  stress.  Because 

 changes  can  be  1)  observed  in  freely  spoken  speech,  2)  respond  to  physiological  stress 

 reactions  specifically,  and  3)  are  as  responsive  as  other  used  methods.  This  highlights  the 

 promise  of  speech  as  a  tool  for  measuring  stress  in  everyday  settings,  considering  its 

 affordability, non-intrusiveness, and ease of collection. 

 In  Chapter  6,  our  perspective,  we  discuss  the  potential  impact  of  speech  as  a  biosignal 

 or  biomarker  in  precision  psychiatry.  We  explore  the  current  use  of  experience  sampling 

 methods  and  other  innovative  approaches  for  assessing  well-being  throughout  the  day,  as  well 

 as  their  application  in  just-in-time  interventions  (JITAIs)  for  people  at  risk,  such  as  those 

 experiencing  suicidal  behavior.  We  propose  that  speech,  as  a  marker  for  stress  as  a 

 transdiagnostic  risk  factor,  could  be  the  missing  link  in  fine-tuning  these  systems,  offering  an 

 easily  accessible  and  affordable  method.  Furthermore,  we  address  practical  and  ethical 

 implications.  Speech  as  a  novel  digital  biosignal  could  play  a  key  role  in  predicting  high-priority 
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 clinical  outcomes  and  delivering  tailored  interventions  to  help  people  when  they  need  it  the 

 most  if  appropriately  and  securely  implemented.  We  urge  for  more  research  to  identify  the  most 

 relevant  speech  signals  and  to  validate  them  against  ground-truth  outcomes,  to  then  translate 

 speech data into biomarkers and JITAIs. 

 Table 2 

 Schematic overview of current findings 

 Note.  Findings  per  chapter  are  categorized  per  speech  style  and  stressor  type.  Green  indicates  an 
 increase  and  red  indicates  a  decrease  under  stress.  White  indicates  no  observed  effect.  Question  marks 
 are  used  to  indicate  missing  pieces  in  the  literature.  F0;  Fundamental  frequency,  HNR; 
 Harmonics-to-Noise  Ratio,  MVSPS;  Mean  Voiced  Segments  Per  Second,  MVSL;  Mean  Voiced  Segment 
 Length. 

 280 



 7.2. Theoretical implications 

 7.2.1. Combined patterns of speech features 

 A  recent  review  highlighted  a  limitation  in  stress  in  speech  research,  where  individual 

 features  are  often  considered  in  isolation  (Van  Puyvelde  et  al.,  2018).  Researchers  have 

 emphasized  the  need  to  examine  combined  patterns  of  multiple  voice  parameters  that  might 

 respond  in  a  meaningful  way,  rather  than  exclusively  focusing  on  the  expression  of  each  voice 

 parameter  separately  (Godin  &  Hansen,  2015;  Van  Puyvelde  et  al.,  2018).  To  address  this  issue, 

 we  conducted  network  analyses  in  Chapter  2  ,  which  revealed  the  interconnectedness  of 

 speech features remained stable when comparing pre-stress and post-stress recordings. 

 Our  analysis  extended  beyond  this  initial  finding  by  examining  change  networks  that 

 directly  related  each  individual's  speech  feature  changes  to  their  changes  in  negative  affect. 

 We  discovered  a  comprehensive  network  with  only  one  direct  connection  between  a  speech 

 feature  (jitter)  and  mood,  indicating  that  changes  in  other  speech  features  due  to  mood 

 alterations function through jitter. 

 7.2.2. Current heterogeneity 

 Throughout  the  existing  literature  on  the  effects  of  stress  on  speech,  there  has  been 

 considerable  heterogeneity  in  the  observed  results,  which  can  be  attributed  to  various 

 limitations  (Giddens  et  al.,  2013;  Slavich  et  al.,  2019;  Van  Puyvelde  et  al.,  2018).  Heterogeneity 
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 refers  to  the  variability  or  diversity  of  findings  across  different  studies  or  analyses  and  it  can 

 arise  due  to  differences  in  study  design,  methodology,  populations,  or  other  factors  that 

 contribute  to  the  dispersion  of  outcomes  (Fletcher,  2007).  The  disparity  in  outcomes  is  not 

 necessarily  bad,  as  it  gives  us  a  comprehensive  understanding  of  the  concept’s  complexity  and 

 its  sensitivity  to  contextual  factors,  and  it  encourages  further  research.  However,  it  also  means 

 there  is  a  certain  difficulty  in  the  interpretation  of  the  results  and  puts  us  at  risk  of  false 

 conclusions when considering the results from just one study. 

 Considering  the  novelty  of  the  field  of  measuring  stress  (and  many  other  psychological 

 and  physiological  phenomena)  through  speech,  it  is  of  utmost  importance  to  target  this 

 heterogeneity  early  to  have  a  solid  foundation  to  build  upon.  Therefore,  this  dissertation  makes 

 a  first  step  towards  finding  the  true  effects  (and  their  complexity)  of  psychosocial  stress  on 

 speech,  whilst  building  on  the  known  knowledge.  We  exclusively  ran  statistically  powered 

 studies,  using  within-participant  designs,  eliciting  actual  stress  in  real  participants  (rather  than 

 actors  portraying  stress),  and  a  controlled  environment  to  ensure  conditions  are  stable  within 

 the  sample.  These  standards  ensure  the  minimization  of  observing  false  positives  in  our  results 

 and supply trustworthy effects that could translate to real-world scenarios. 

 However,  as  mentioned  before,  heterogeneity  itself  is  not  inherently  negative,  as  it 

 reveals  the  intricacy  of  an  effect.  To  uncover  true  effects  and  unravel  this  complexity, 

 consistent  and  systematic  research  is  necessary,  which  involves  studying  specific  features  in 

 various  contexts.  With  regard  to  speaking  style  and  stressor  type,  we  do  not  claim  that  there  is 

 a  single  correct  answer.  As  such,  the  following  sections  will  outline  some  considerations 
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 concerning  these  aspects  and  explain  how  this  dissertation  addresses  these  facets  of 

 heterogeneity. 

 7.2.2.1. Speech styles 

 In  our  first  studies,  we  used  read-out-loud  paradigms  to  generate  results.  This  was 

 purposely  done,  because  scripted  lab  speech  more  conveniently  allows  for  systematic 

 experimental  control,  thus  limiting  the  implicit  inclusion  of  unwanted  latent  variables  (Xu,  2010). 

 As  such,  we  conducted  our  study  described  in  Chapter  3  ,  where  multiple  scripted  speech 

 recordings  were  done  throughout  both  a  stress  task  (negative  social  comparison)  and  an  active 

 control.  This  was  the  first  study  to  do  so,  and  as  such,  the  results  show  how  speech  behaves 

 under  stress  when  all  other  factors  are  controlled.  This  could  be  described  as  a  rather 

 fundamental  approach  since  it  minimizes  the  background  and  situational  noise  that  would 

 occur  in  more  naturalistic  settings,  such  as  background  sounds  (e.g.,  traffic,  wind), 

 conversational  overlap,  and  acoustic  variability  (e.g.,  variable  distance  to  microphone).  The 

 observed  results  were  partially  in  line  with  former  literature,  such  as  increases  in  HNR  and  F0, 

 and  a  decrease  in  Shimmer,  yet,  no  results  were  observed  for  jitter,  MVSL,  and  MVSPS 

 (Giddens et al., 2013; Kappen, Van Der Donckt, et al., 2022; Van Puyvelde et al., 2018). 

 However,  acoustic  properties  found  in  one  speech  style  can  be  style-specific,  which 

 limits  the  explanatory  power  of  the  speech  results  to  other  settings  (e.g.,  the  real  world). 

 Unscripted  speech  (as  found  in  daily  life),  which  requires  larger  planning  units  such  as 

 sentences,  clauses,  and  temporal  structure,  can  lead  to  changes  in  wording,  grammar,  and 

 timing  of  speech  under  these  affective  states  (Fromkin,  1973;  Paulmann  et  al.,  2016;  Slavich  et 
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 al.,  2019).  These  prosodic  markers  are  less  pronounced  in  scripted  speech,  as  fewer  planning 

 units  are  needed  (Barik,  1977;  Xu,  2010).  Therefore,  a  promising  research  direction  would  be  to 

 investigate  the  influence  of  stress  on  speech  in  different  speech  styles  that  could  be 

 implemented  in  real-world  settings  (Wagner  et  al.,  2015).  On  top  of  this,  the  scalability  of 

 speech  acquisition  methods  should  be  considered,  given  that  the  long-term  objective  of 

 affective  sensing  experiments  is  to  facilitate  widespread,  real-world  affect  monitoring  (Slavich 

 et  al.,  2019),  which  is  challenging  and  perhaps  unrealistic  using  exclusively  scripted  speech 

 acquisition. 

 In  Chapter  4  ,  we  outline  considerations  with  regard  to  the  differences  in  speech  style 

 (i.e,  unscripted  spontaneous  speech  versus  scripted  read-aloud  speech)  and  propose  what 

 would  be  needed  to  generate  results  from  speech  research  both  in  the  lab  and  in  the  real  world 

 and  how  they  no  longer  have  to  be  two  different  fields,  but  could  actually  support  each  other. 

 Speech  style  As  such,  we  developed  the  Ghent  Semi-spontaneous  Speech  Paradigm  (GSSP) 

 which  entails  a  picture-description  paradigm  to  collect  speech  data.  To  validate  whether  the 

 GSSP  would  be  able  to  cater  to  this  need,  we  validated  not  only  whether  the  collected  speech 

 from  the  GSSP  was  different  from  the  scripted  speech,  but  also  to  what  extent  it  was  similar  to 

 naturalistic  speech.  We  first  demonstrated  that  indeed,  each  person  has  their  own  speaking 

 style,  as  illustrated  by  a  different  color  for  every  speaker  in  Figure  1a  1  ,  but  we  also  showed  that 

 for  each  person  there  was  a  clear  distinction  in  speaking  style  between  the  two  paradigms  as 

 shown  in  Figure  1b  13  .  Moreover,  when  we  validated  the  model  using  an  external  dataset 

 13  In  the  provided  figures  (t-SNE  visualization)  for  speaker  identification,  it  is  important  to  note 
 that  the  x  and  y  axes  do  not  represent  specific,  interpretable  values  or  measurements.  Rather,  the 
 primary  focus  of  this  visualization  is  the  clustering  of  data  points,  which  correspond  to  speakers 
 exhibiting  similar  features.  The  axes  serve  to  facilitate  the  representation  of  these  relationships  within  a 
 two-dimensional plane, and as such, the numerical values on the axes should not be a point of concern. 
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 containing  both  interview  and  read-aloud  speech,  we  achieved  a  balanced  accuracy  score  of 

 70%.  This  result  indicates  that  there  is  an  acoustic  similarity  between  the  speech  collected 

 through  the  GSSP  and  spontaneous  interviewee  speech.  The  GSSP  is  therefore  a  crucial 

 addition  and  main  recommendation  for  future  speech  research,  both  in  the  lab  and  in  everyday 

 settings. 

 Figure 1. 
 Plots  showing  t-SNE  visualizations  for  speaker  identification  on  all  experiment  data,  collected  using  the 
 GSSP  and  read-out-loud  speech  1  .  Plot  a  shows  hue  based  on  speaker  ID,  plot  b  shows  hue  based  on 
 speech style (i.e., GSSP vs read-out-loud). 

 (a)  Hue determined by speaker ID. 
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 (b)  Hue determined by speech style. 

 Using  a  picture  description  in  Chapter  4  ,  therefore  adds  substantially  to  the  literature, 

 considering  the  reproduction  of  several  speech  features  such  as  an  increase  in  F0,  MVSPS, 

 and  MVSL,  and  a  decrease  in  jitter,  but  not  being  able  to  find  significant  changes  in  HNR  and 

 shimmer.  These  results  give  us  a  clear  direction  on  which  speech  features  will  play  a 

 substantial role in the development of further deterministic modeling. 

 7.2.2.2. Diversity in stressors 

 Another  proposed  explanation  for  the  observed  heterogeneity  in  the  literature  is  related 

 to  how  different  studies  use  different  stressors.  Not  only  is  there  often  a  lack  of  differentiation 

 between  physiological  and  psychological  stressors  (Giddens  et  al.,  2013)  but  there  is  also  a  lot 

 of  variability  in  stress  reactions  to  different  stressors  and  between  individuals.  Indeed,  like 

 physical  stressors  (e.g.,  electric  shock,  prolonged  exercise),  psychological  stressors  are  indeed 
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 capable  of  activating  the  HPA  axis  (Dickerson  &  Kemeny,  2004;  Kirschbaum  et  al.,  1993). 

 However,  the  effects  of  psychological  stressors  on  this  physiological  system  are  highly  variable, 

 whereas  many  studies  have  failed  to  find  cortisol  changes  and  inconsistencies  are  often 

 described  (Allen  et  al.,  2014;  Biondi  &  Picardi,  1999;  Dickerson  &  Kemeny,  2004;  Manuck  et  al., 

 1991).  As  such,  we  designed  a  study  targeting  this  exact  challenge.  In  Chapter  5  we  showed, 

 in  a  within-participant  design,  that  participants  indeed  responded  differently  to  two  different 

 stressors  (i.e.,  Cyberball  &  MIST).  Not  only  did  the  responses  differ  in  self-reports  and 

 physiological  measures,  but  also  in  speech  features.  More  specifically,  the  speech  features 

 showed  similar  responsiveness  to  the  different  stressors  as  the  physiological  and  self-reported 

 stress  measures  (i.e.,  only  responding  to  the  MIST,  and  not  the  Cyberball).  These  results 

 support  the  claim  that  the  observed  heterogeneity  is  due  to  the  variety  of  used  stressors  in  the 

 literature  and  show  that  these  core  speech  features  are  exclusively  responsive  to  stressors 

 eliciting  a  physiological  reaction  when  being  assessed  in  semi-guided  (picture  describe) 

 speech.  Specifically,  this  shows  that  our  endeavors  to  make  deterministic  models  of  everyday 

 stress  from  free  speech  samples  should  focus  on  using  F0  (~pitch),  MVSPS  (~speech  rate),  and 

 jitter (pitch variation). 

 7.3. Practical and clinical implications 

 As  discussed  in  the  former  section,  this  dissertation  mainly  adds  to  the  literature  by 

 showing  that  stress  indeed  has  significant  effects  on  the  voice  and  that  these  resemble  the 

 sensitivity  of  other,  often-used  methods.  Considering  the  cost-effectiveness,  ease  of  collection, 

 and  accessibility  of  this  data  modality,  it  holds  great  promise  for  the  future  of  health  monitoring. 
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 However,  it  should  be  noted  that  the  implementation  of  speech  as  a  detection  tool  for  stress  is 

 beyond  our  objectives,  but  these  findings  will  primarily  contribute  to  the  development  of  such 

 tools.  Therefore,  the  following  section  will  touch  upon  the  practical  and  clinical  implications  of 

 further developing human speech into a trustworthy biomarker for stress. 

 First,  it  is  good  to  acknowledge  that  this  goes  beyond  the  mere  field  of  stress  and  this 

 dissertation’s  scope,  but  crosses  into  a  wide  variety  of  disorders  and  symptoms,  including,  but 

 not  exclusively,  depression,  post-traumatic  stress  disorder,  eating  disorders,  and  anxiety 

 disorder  (Al  Hanai  et  al.,  2018;  J.  F.  Cohn  et  al.,  2009;  Koops  et  al.,  2021;  Low  et  al.,  2020; 

 Marmar  et  al.,  2019;  Voppel  et  al.,  2022).  Increasingly,  models  are  proposed  that  are  trained  on 

 datasets  to  predict  whether  someone  is  depressed  or  stressed  or  any  of  these  other  factors. 

 However,  many  of  these  studies  share  a  limitation,  which  is  a  problem  with  feature  selection.  It 

 is  often  unclear  which  features  play  a  role,  so  large  feature  sets  are  used,  resulting  in  often 

 overfitted  models  that  would  not  function  well  in  newly  presented  data  (Parry  et  al.,  2022). 

 Therefore,  many  studies  specifically  focus  on  identifying  particular  features  that  respond  in 

 order  to  identify  a  set  of  features  that  should  be  given  extra  weight  and  can  make  the  final 

 stretch  to  predictive  models  that  would  translate  well  to  newly  presented  data  (Baird  et  al., 

 2019,  2021;  Bhatia  et  al.,  2021;  Boyer  et  al.,  2018;  J.  Li  et  al.,  2022;  N.  Li  et  al.,  2021; 

 Rodellar-Biarge  et  al.,  2015).  This  dissertation  outlines,  specifically  in  increasingly  naturalistic 

 settings,  how  certain  speech  features  behave  with  regard  to  stress.  This  information  is  key  to 

 building  deterministic  models  that  translate  well  to  the  grand  population,  especially  when 

 expanding  to  and  taking  into  consideration  the  individualistic  inter-speaking  variability  of  stress 
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 reactions,  both  vocally  and  physiologically  (Giddens  et  al.,  2013;  Kappen,  Hoorelbeke,  et  al., 

 2022; Kurniawan et al., 2013; Van Puyvelde et al., 2018; Zhu-Zhou et al., 2022). 

 Being  able  to  accurately  detect  stress  from  one’s  speech  would  be  of  value  in  a  wide 

 variety  of  settings,  such  as  quick  stress  assessments  in  emergency  calls  (König  et  al.,  2021), 

 speech  recognition  (Bou-Ghazale  &  Hansen,  2000)  for  instance  for  security  systems  and 

 human-computer  interactions,  and  as  a  transdiagnostic  marker  for  many  different  psychiatric 

 diseases (Kappen et al., 2023). 

 7.4. Continuous monitoring 

 The  chronic  and  relapsing  nature  of  many  mental  health  disorders  is  the  rule  and  not  the 

 exception.  Thus,  the  need  for  long-term  follow-up  and  assessment  methods  become  essential 

 for  patients’  symptom  reduction  and  recovery.  Traditional  monitoring  methods  often  rely  on 

 retrospective  reports  which  are  subject  to  recall  bias,  lack  of  measurement  frequency,  and  are 

 time-consuming  (Abbas  et  al.,  2021;  Garcia-Ceja  et  al.,  2018;  Slavich  et  al.,  2019).  This 

 approach  limits  the  ability  to  accurately  characterize,  understand,  and  change  behavior  in 

 real-world  settings  (Garcia-Ceja  et  al.,  2018;  Shiffman  et  al.,  2008).  As  such,  continuous 

 monitoring  of  people's  mental  health  has  gained  increasing  interest  in  recent  years  as  a  means 

 to  better  understand  the  dynamic  nature  of  psychological  well-being.  This  approach  focuses  on 

 the  real-time  assessment  of  an  individual's  thoughts,  emotions,  and  behaviors,  offering 

 valuable  insights  into  the  fluctuating  patterns  of  mental  health  (Shiffman  et  al.,  2008).  By 

 tracking  these  changes  over  time,  continuous  monitoring  can  provide  a  more  comprehensive 
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 understanding  of  an  individual's  mental  health  and  inform  personalized  interventions.  One 

 effective  method  for  continuous  mental  health  monitoring  is  the  use  of  Ecological  Momentary 

 Assessments (EMAs). 

 The  use  of  EMAs  in  psychiatric  and  psychological  research  allows  for  the  examination 

 of  dynamic  patterns  in  mental  health  symptoms  and  their  underlying  mechanisms  (Garcia-Ceja 

 et  al.,  2018;  Shiffman  et  al.,  2008).  This  can  lead  to  a  better  understanding  of  the  temporal 

 relationships  between  various  psychological  factors  and  may  reveal  crucial  information  about 

 the  onset  and  progression  of  mental  health  issues.  EMA  measurements  have  been  shown  to 

 outperform  paper  and  pencil  reports  in  the  assessment  of  some  mental  states  in  terms  of 

 sensitivity  to  detect  changes  (Moore  et  al.,  2016).  However,  EMAs  are  still  often  limited  to 

 high-frequency  self-reports,  and  could  greatly  flourish  with  the  use  of  our  earlier-mentioned 

 multimodal  approach.  Specifically,  integrating  data  from  smart  devices  all  around  us  can  vastly 

 increase  the  inference  we  have  on  mental  health  metrics  (Donker  et  al.,  2013;  Firth  et  al.,  2017; 

 Torous  et  al.,  2014).  EMAs  enable  the  investigation  of  contextual  factors  that  may  influence 

 mental  health,  such  as  environmental  stressors,  social  interactions,  and  daily  routines,  which 

 can  provide  valuable  insights  for  the  development  of  tailored  interventions.  However,  including 

 data  from  other  sensors  can  even  supply  more  contextual  information  such  as  physical  activity 

 (Lara  &  Labrador,  2013),  location  (Brena  et  al.,  2017),  mood  (LiKamWa  et  al.,  2011),  and  social 

 relationships (Eagle & Pentland, 2006). 

 Currently,  many  researchers  are  focussing  on  individual  or  the  combination  of  only  a 

 few  different  modalities,  whereas  the  combination  of  as  many  different  methods  at  hand  would 

 offer  continuously  increasing  accuracies  (Abbas  et  al.,  2021;  Garcia-Ceja  et  al.,  2018; 
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 Giannakakis  et  al.,  2022).  In  a  future  of  digital  phenotyping,  where  multiple  data  streams  are 

 integrated  for  clinical  decision-making,  self-reports  will  remain  an  important  feature  of  health 

 and  function,  but  other  measures  are  needed  to  maximize  its  potential  (Abbas  et  al.,  2021; 

 Garcia-Ceja  et  al.,  2018;  Kappen  et  al.,  2023).  Analyzing  speech,  from  the  ubiquitous  amounts 

 of  speech  data  constantly  being  recorded  around  us,  might  be  the  missing  link  here,  as 

 presented  in  Chapter  6  .  Specifically,  if  we  are  able  to  derive  an  accurate  index  of  the  stress  of 

 speech  signals,  considering  its  transdiagnostic  presence  (Giannakakis  et  al.,  2022;  Kappen  et 

 al., 2023). 

 By  continuously  monitoring  stress,  we  not  only  increase  the  sampling  frequency  but 

 also  gain  insight  into  the  highly  dynamic  nature  of  stress,  which  is  critical  for  understanding 

 individual  well-being  and  developing  tailored  interventions  (Cramer  et  al.,  2016;  Wichers,  2014). 

 For  example,  research  has  shown  that  individual  responses  to  stress  and  recovery  from  stress 

 can  be  indicative  of  more  serious  psychopathology  (Burke  et  al.,  2005).  This  approach  can  also 

 incorporate  various  aspects  of  mental  health,  such  as  sleep,  which  has  been  shown  to  play  a 

 critical  role  in  stress  response  and  recovery  (Cramer  et  al.,  2016;  Hemmeter  et  al.,  2010). 

 Sleepiness  can  even  be  detected  from  speech,  further  emphasizing  the  potential  of  multimodal 

 monitoring  (Martin  et  al.,  2019).  By  taking  into  account  multiple  factors,  such  as  stress  and 

 sleep,  we  can  develop  a  comprehensive  understanding  of  the  complex  interplay  between  these 

 factors  and  their  role  in  the  onset  and  progression  of  mental  health  issues.  This  focus  on  the 

 dynamic  nature  of  mental  health  and  the  integration  of  multiple  symptoms  ultimately 

 contributes  to  a  more  effective,  personalized  approach  to  mental  health  care  (Borsboom,  2008; 

 Cramer et al., 2010, 2016; Robinaugh et al., 2020). 
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 To  summarize,  in  mental  health,  continuous  monitoring  can  facilitate  personalized  care 

 by  tracking  individuals'  mental  health  status  in  real-time,  helping  clinicians  identify  early 

 warning  signs,  and  adjust  treatment  plans  accordingly  (Faurholt-Jepsen  et  al.,  2018; 

 Garcia-Ceja  et  al.,  2018;  Kappen  et  al.,  2023;  Shiffman  et  al.,  2008).  This  approach  can  also 

 empower  individuals  to  become  more  aware  of  their  own  mental  health  patterns  and  triggers, 

 potentially  promoting  self-management  and  fostering  resilience.  Overall,  the  incorporation  of 

 continuous,  passive  monitoring  in  psychiatric  and  psychological  research  and  mental  health 

 monitoring  has  the  potential  to  significantly  enhance  our  understanding  of  mental  health 

 processes  and  contribute  to  the  development  of  more  effective,  personalized  interventions 

 (Abbas et al., 2021; Garcia-Ceja et al., 2018; Kappen et al., 2023). 

 7.5. Limitations 

 The  following  sections  will  discuss  some  limitations,  both  of  speech  research  in  general  as  well 

 as this dissertation specifically. 

 7.5.1. Limitations of speech research in previous work 

 Firstly,  it  is  crucial  to  acknowledge  that  many  early  studies  relied  on  publicly  available 

 datasets  instead  of  collecting  their  own  data.  These  datasets  often  lack  multiple  recordings  of 

 the  same  individual  under  different  conditions,  such  as  a  relaxed  state,  or  are  composed  of  lab 

 recordings  featuring  actors  simulating  emotions,  resulting  in  exceptional  audio  quality  that  may 
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 not  be  reflective  of  real-life  situations  (Giddens  et  al.,  2013;  Zhu-Zhou  et  al.,  2022). 

 Consequently, the existing literature is rather limited and its applicability is restricted. 

 Additionally,  a  significant  number  of  studies  employ  different  types  of  stress  and  various 

 methods  to  record  speech.  These  varying  approaches  make  it  challenging  to  consolidate 

 results,  leading  to  observed  heterogeneity  that  might  not  be  entirely  justified  (Giddens  et  al., 

 2013;  Van  Puyvelde  et  al.,  2018).  Both  these  limitations  have  been  partially  challenged  in  this 

 dissertation, but more work is needed, as described in the future directions section. 

 7.5.2. Limitations of this dissertation 

 While  our  research  makes  significant  steps  toward  the  real-world  application  of  this 

 novel  method,  certain  limitations  must  be  acknowledged.  Firstly,  our  sample  was  exclusively 

 collected  in  Flanders  and  the  Netherlands  among  predominantly  young  people.  Research 

 indicates  that  while  some  vocal  bursts  are  similar  across  cultures  (79%),  differences  exist  in 

 vocal  expression  (Brooks  et  al.,  2023).  Although  these  studies  primarily  focus  on  emotional 

 speech  contexts  across  cultures,  it  can  be  assumed  that  this  translates  to  speech 

 characteristics  related  to  stress  (Cowen  et  al.,  2019).  Assuming  a  similar  pattern,  our  results 

 remain highly informative for intercultural studies, but validation in other samples is necessary. 

 Additionally,  the  research  in  this  dissertation  focused  specifically  on  acute  stressors. 

 Acute  stressors  are  adaptive  in  nature  to  handle  situations  that  are  deemed  threatening.  They 

 are,  therefore,  not  inherently  related  to  negative  health  outcomes.  When  stress  becomes  more 

 chronic,  it  can  lead  to  a  wide  range  of  health  problems  including  cardiovascular  disease, 
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 coronary  heart  disease,  anxiety  disorders,  depression,  autoimmune  disease,  and 

 neurodegenerative  disorders,  among  others  (Bhushan  et  al.,  2020;  Brosschot  et  al.,  2017;  S. 

 Cohen  et  al.,  2007;  Juster  et  al.,  2010;  Kappen  et  al.,  2023;  Slavich  &  Irwin,  2014).  Therefore, 

 the  direct  impact  on  the  long-term  human  well-being  of  the  presented  research  is  limited  in 

 itself  until  it  is  expanded  to  include  a  focus  on  chronic  and  lifetime  stressors.  Moreover,  our 

 research  focused  on  group-level  stress-induction,  without  taking  individual  emotion  regulation 

 strategies  and  coping  mechanisms  into  account.  Whilst  the  speech  recordings  were 

 administered  directly  after  or  during  the  tasks,  limiting  the  space  for  conscious  reappraisal  due 

 to  occupancy  with  the  task,  it  is  likely  that  participants  showed  emotion  regulation  and  coping 

 strategies  during  the  task  (Wang  &  Saudino,  2011).  The  occurrence  of  such  techniques  would 

 have  minimized  the  observed  effect  sizes  in  stress  responses  and,  therefore,  speech  reactivity. 

 As such, future research should gauge participants’ emotion regulation measures. 

 Lastly,  an  ideal  addition  to  this  dissertation  would  have  been  the  development  of  a 

 large,  openly  available  dataset,  as  the  field  currently  lacks  high-quality,  high-dimensional  ones. 

 However,  due  to  recent  changes  in  ethical  guidelines  and  the  sensitive  nature  of  vocal 

 recordings,  we  have  not  yet  been  able  to  create  a  dataset  that  fully  meets  the  current  needs. 

 We  have,  however,  made  all  our  individual  datasets  as  openly  accessible  as  possible,  complete 

 with detailed guidelines and usage instructions. 
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 7.6. General suggestions for future research 

 In  order  to  further  progress  the  development  of  speech  as  a  biomarker  for  stress,  we  propose 

 some  suggestions  for  future  research  taking  on  the  aforementioned  limitations.  Firstly,  it  is 

 necessary  to  keep  expanding  sample  sizes  as  well  as  the  diversity  of  sample  characteristics. 

 Large  samples  will  both  enable  us  to  detect  smaller  effects  and  differences,  for  instance 

 between  stressors,  but  could  also  enable  us  to  identify  individual  differences  in  vocal 

 responses  to  stress.  More  specifically,  it  is  currently  often  argued  that  the  individual’s  vocal  and 

 stress  responses  are  highly  individual,  but  it  could  also  be  proposed  that  there  are  in  fact  highly 

 dynamic  underlying  latent  groups  (Abbas  et  al.,  2021;  Garcia-Ceja  et  al.,  2018;  Giddens  et  al., 

 2013; Van Puyvelde et al., 2018). 

 Moreover,  we  should  increase  the  diversity  of  samples  used  in  these  studies.  It  will  yield 

 unique  insights  into  cultural  differences  in  vocal  and  stress  responses,  but  could  also  help 

 develop  this  method  to  detect  stress  in  groups  that  would  profit  the  most  from  it,  such  as 

 ethnic,  sexual,  and  socio-economic  minorities  (Bhushan  et  al.,  2020;  Diamond  &  Alley,  2022; 

 Frisell et al., 2010; Meyer, 2003; Slavich et al., 2023; Walton & Cohen, 2011). 

 Furthermore,  researchers  often  limit  their  endeavors  to  one  specific  dependent  variable, 

 such  as  stress,  depression,  schizophrenia,  sleepiness,  etc.  (Cho  et  al.,  2022;  Koops  et  al., 

 2021;  Langer  et  al.,  2022;  Low  et  al.,  2020;  Lu  et  al.,  2012;  Martin  et  al.,  2021;  Voppel  et  al., 

 2022).  However,  there  is  an  increasing  network  approach  when  discussing  psychopathology, 

 that  suggests  that  mental  disorders  can  be  conceptualized  and  studied  as  causal  systems  of 

 mutually  reinforcing  symptoms,  rather  than  the  distinct  groups  as  they  are  identified  by  the 
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 DSM  (Cramer  et  al.,  2010;  de  Boer  et  al.,  2021;  Robinaugh  et  al.,  2020).  While  staying  up  to 

 date  with  these  latest  developments,  we  should  also  acknowledge  how  the  identification  of 

 psychopathology  and  symptoms  in  a  real-world  setting  would  look  as  it  is  rarely  a  matter  of 

 dichotomously  approaching  each  individual  label  (e.g.,  depression;  yes/no),  but  more  trying  to 

 make  a  probability  estimate  of  each  individual  label  at  the  same  time  when  considering  a 

 multitude  of  symptoms.  Therefore,  future  research  should  try  and  face  this  challenge  too  by 

 considering  a  network  of  dependent  variables  instead  (Borsboom,  2008;  Cramer  et  al.,  2010; 

 de Boer et al., 2021; Robinaugh et al., 2020). 

 Before  reaching  the  stage  of  real-world  applications,  speech  analysis  must  be  tested 

 and  validated  in  various  settings,  as  the  real  world  offers  diverse  conditions,  and  ideally,  this 

 technique  should  perform  well  across  a  wide  range  of  situations.  Future  studies  should  take 

 incremental  steps  towards  increasingly  naturalistic  settings,  including  the  introduction  of 

 multiple  speakers  in  recordings,  enhancing  noise  in  the  signal,  expanding  the  variety  and 

 intensity  of  stressors,  testing  with  real-world  microphones  such  as  those  found  in 

 smartphones,  and  gradually  moving  towards  a  completely  natural,  real-world  testing 

 environment,  see  Table  2  (Kappen  et  al.,  2023;  Paulmann  et  al.,  2016;  Slavich  et  al.,  2019; 

 Zhu-Zhou et al., 2022). 

 When  we  reach  the  stage  of  real-world  applications,  we  can  begin  developing  models 

 tailored  to  each  individual's  specific  responses  and  environments.  These  applications  should 

 integrate  and  combine  a  wide  variety  of  methodologies  that  could  learn  from  each  other  and 

 improve collectively (Abbas et al., 2021; Garcia-Ceja et al., 2018; Van Puyvelde et al., 2018). 
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 More  specifically,  speech  measurements  could  be  both  improved  by  and  incorporated 

 into  current  high-frequency  patient  monitoring  systems.  These  systems  have  demonstrated 

 promising  results  in  the  fields  of  self-harm,  suicide,  depression,  bipolar  disorder,  schizophrenia, 

 alcohol  and  substance  abuse,  and  more,  and  would  likely  greatly  benefit  from  the  integration  of 

 speech  measures  (Colombo  et  al.,  2019;  Faurholt-Jepsen  et  al.,  2018;  Gee  et  al.,  2020;  Kappen 

 et al., 2023; Mote & Fulford, 2020; Serre et al., 2015). 

 We  specifically  designed  Table  2  to  illustrate  which  aspects  of  the  puzzle  this 

 dissertation  has  addressed,  and  which  areas  still  require  further  investigation.  By  filling  in  the 

 empty  spaces,  inconsistencies  that  arise  due  to  factors  such  as  individual  differences,  settings, 

 and  speech  styles  will  become  more  evident,  allowing  us  to  work  towards  the  ultimate  goal  of 

 understanding  how  speech,  recorded  in  a  wide  variety  of  settings,  responds  to  a  diverse  range 

 of stressors, making it an applicable biomarker for stress. 

 7.6.1. Language-based markers 

 The  studies  presented  in  this  dissertation  predominantly  focused  on  acoustic  and 

 prosodic  speech  features.  These  were  chosen  because  they  are  easy  to  extract  and  less 

 language  and  culturally  dependent.  However,  future  research  could  expand  into  investigating 

 the  effects  of  stress  on  language-based  features.  Currently,  these  methods  are  highly  time 

 intensive,  as  the  main  method  of  acquiring  accurate  transcriptions  of  speech  samples  is  by 

 hand,  but  with  recent  developments  in  automated  speech-to-text  algorithms,  these  approaches 

 will  be  increasingly  easily  accessible.  Including  semantic  features  could  reveal  unique  insights 
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 into  underlying  processes,  such  as  cognitive  capacity  (A.  S.  Cohen  et  al.,  2014;  Hansen  &  Patil, 

 2007; Parry et al., 2022). 

 The  potential  of  language-based  features  for  stress  and  mental  health  monitoring  has 

 been  supported  by  a  range  of  studies.  For  instance,  Rude  et  al.  (2004)  and  Tausczik  and 

 Pennebaker  (2010)  showed  that  individuals  experiencing  depression  tend  to  use  more 

 first-person  singular  pronouns,  which  indicates  that  pronoun  usage  should  be  explored  in  the 

 context  of  stress  detection  too.  Moreover,  research  analyzing  social  media  data  has 

 demonstrated  that  certain  words,  phrases,  and  linguistic  patterns  can  be  associated  with 

 mental  health  conditions  (Coppersmith  et  al.,  2014).  This  highlights  the  potential  of  text  analysis 

 as a tool for detecting mental health-related linguistic features. 

 Additionally,  studies  have  found  associations  between  daily  word  use  and 

 psychological  states,  with  certain  linguistic  features,  like  the  use  of  function  words,  relating  to 

 emotional  well-being  (Pennebaker  et  al.,  2003).  As  well  as  in  the  context  of  trauma,  research 

 has  shown  that  the  use  of  specific  words,  such  as  negative  emotion  words,  can  be  associated 

 with  increased  psychological  distress  (M.  A.  Cohn  et  al.,  2004).  Furthermore,  self-reported 

 emotions  have  been  found  to  be  related  to  the  use  of  certain  emotional  words  and  vocabulary 

 richness,  reinforcing  the  potential  of  language-based  features  for  stress  detection  (Shuman  et 

 al., 2015). 

 Taken  together,  these  findings  suggest  that  language-based  features,  including  pronoun 

 usage  and  word  choice,  can  be  indicative  of  an  individual's  psychological  state,  such  as  stress. 

 Further  investigation  of  language  patterns  in  stress  research  could  further  increase  accuracy 
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 from  speech  samples  and  pave  the  way  for  innovative  approaches  to  understanding, 

 monitoring, and managing stress, ultimately enhancing overall mental health and well-being. 

 7.7. General Conclusions 

 The  primary  goal  of  the  research  presented  in  this  dissertation  was  to  develop  and 

 validate  speech  as  a  biomarker  for  acute  stress  using  state-of-the-art  speech  analysis 

 techniques.  Our  findings  contribute  to  the  understanding  of  how  speech  characteristics  can  be 

 used  to  detect  and  monitor  stress  levels,  with  potential  real-world  applications  in  various  fields 

 such as mental health care, occupational health, and personal well-being. 

 In  summary,  our  research  identified  specific  speech  characteristics  related  to  acute 

 stress  and  how  they  interact  under  stress  (Chapter  2),  validated  these  features  using 

 read-out-loud  speech  and  negative  social  feedback  (Chapter  3),  developed  a  new  methodology 

 to  collect  naturalistic  speech  samples  (Chapter  4),  validated  the  speech  features  in  freely 

 spoken  speech  and  in  different  stressor  paradigms  (Chapter  5),  and  presented  a  context  of 

 future  implementations  for  speech  as  a  biomarker  for  stress  (Chapter  6).  These  findings  provide 

 a  foundation  for  future  research  aimed  at  refining  and  expanding  the  use  of  speech  analysis  as 

 a biomarker for stress and mental health. 

 The  clinical  relevance  and  potential  applications  of  this  research  are  significant,  as  the 

 developed  methodology  can  be  translated  into  tools  for  monitoring  stress  and  mental  health  in 

 various  populations.  Integrating  speech  analysis  with  existing  high-frequency  patient 
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 monitoring  systems  could  further  enhance  our  ability  to  detect  and  manage  stress-related 

 conditions and improve mental health outcomes. 

 In  conclusion,  our  findings  support  the  potential  of  speech  analysis  as  a  non-invasive, 

 affordable,  and  easily  accessible  tool  for  detecting  and  monitoring  acute  stress.  We  hope  that 

 the  developed  methodology  can  contribute  to  the  improvement  of  mental  health  care  and 

 overall  well-being  by  providing  new  insights  and  tools  for  monitoring  stress  and  related 

 conditions. 

 300 



 7.8. References 

 Abbas, A., Schultebraucks, K., & Galatzer-Levy, I. R. (2021). Digital Measurement of Mental 

 Health: Challenges, Promises, and Future Directions.  Psychiatric Annals  ,  51  (1), 14–20. 

 https://doi.org/10.3928/00485713-20201207-01 

 Al Hanai, T., Ghassemi, M., & Glass, J. (2018). Detecting Depression with Audio/Text Sequence 

 Modeling of Interviews.  Interspeech 2018  , 1716–1720. 

 https://doi.org/10.21437/Interspeech.2018-2522 

 Allen, A. P., Kennedy, P. J., Cryan, J. F., Dinan, T. G., & Clarke, G. (2014). Biological and 

 psychological markers of stress in humans: Focus on the Trier Social Stress Test. 

 Neuroscience & Biobehavioral Reviews  ,  38  , 94–124. 

 https://doi.org/10.1016/j.neubiorev.2013.11.005 

 Baird, A., Amiriparian, S., Cummins, N., Sturmbauer, S., Janson, J., Messner, E., Baumeister, 

 H., & Rohleder, N. (2019).  Using Speech to Predict  Sequentially Measured Cortisol 

 Levels During a Trier Social Stress Test Chair of Clinical Psychology and Psychotherapy , 

 University of Ulm , Germany  . 534–538. 

 Baird, A., Triantafyllopoulos, A., Zänkert, S., Ottl, S., Christ, L., Stappen, L., Konzok, J., 

 Sturmbauer, S., Meßner, E.-M., Kudielka, B. M., Rohleder, N., Baumeister, H., & 

 Schuller, B. W. (2021). An evaluation of speech-based recognition of emotional and 

 physiological markers of stress.  Frontiers in Computer  Science  ,  3  , 750284. 

 https://doi.org/10.3389/fcomp.2021.750284 

 Barik, H. C. (1977). Cross-Linguistic Study of Temporal Characteristics of Different Types of 

 Speech Materials.  Language and Speech  ,  20  (2), 116–126. 

 301 



 https://doi.org/10.1177/002383097702000203 

 Bhatia, A., Miyatsu, T., & Pirolli, P. (2021). Towards the Development of Speech-Based 

 Measures of Stress Response in Individuals.  Proceedings  of the Seventh Workshop on 

 Computational Linguistics and Clinical Psychology: Improving Access  , 192–203. 

 https://doi.org/10.18653/v1/2021.clpsych-1.21 

 Bhushan, D., Kotz, K., McCall, J., Wirtz, S., Gilgoff, R., Rishi Dube, S., Powers, C., 

 Olson-Morgan, J., Galeste, M., Patterson, K., Harris, L., Mills, A., Bethell, C., & Burke 

 Harris, N. (2020).  The Roadmap for Resilience: The  California Surgeon General’s Report 

 on Adverse Childhood Experiences, Toxic Stress, and Health  . Office of the California 

 Surgeon General. https://doi.org/10.48019/PEAM8812 

 Biondi, M., & Picardi, A. (1999). Psychological Stress and Neuroendocrine Function in Humans: 

 The Last Two Decades of Research.  Psychotherapy and  Psychosomatics  ,  68  (3), 

 114–150. https://doi.org/10.1159/000012323 

 Borsboom, D. (2008). Psychometric perspectives on diagnostic systems.  Journal of Clinical 

 Psychology  ,  64  (9), 1089–1108. https://doi.org/10.1002/jclp.20503 

 Bou-Ghazale, S. E., & Hansen, J. H. L. (2000). A comparative study of traditional and newly 

 proposed features for recognition of speech under stress.  IEEE Transactions on Speech 

 and Audio Processing  ,  8  (4), 429–442. https://doi.org/10.1109/89.848224 

 Boyer, S., Paubel, P.-V., Ruiz, R., El Yagoubi, R., & Daurat, A. (2018). Human Voice as a 

 Measure of Mental Load Level.  Journal of Speech, Language  & Hearing Research  , 

 61  (11), 2722–2734. https://doi.org/10.1044/2018_JSLHR-S-18-0066 

 Brena, R. F., García-Vázquez, J. P., Galván-Tejada, C. E., Muñoz-Rodriguez, D., 

 Vargas-Rosales, C., & Fangmeyer, J. (2017). Evolution of Indoor Positioning 

 302 



 Technologies: A Survey.  Journal of Sensors  ,  2017  , 1–21. 

 https://doi.org/10.1155/2017/2630413 

 Brooks, J. A., Tzirakis, P., Baird, A., Kim, L., Opara, M., Fang, X., Keltner, D., Monroy, M., 

 Corona, R., Metrick, J., & Cowen, A. S. (2023). Deep learning reveals what vocal bursts 

 express in different cultures.  Nature Human Behaviour  ,  7  (2), Article 2. 

 https://doi.org/10.1038/s41562-022-01489-2 

 Brosschot, J. F., Verkuil, B., & Thayer, J. F. (2017). Exposed to events that never happen: 

 Generalized unsafety, the default stress response, and prolonged autonomic activity. 

 Neuroscience & Biobehavioral Reviews  ,  74  , 287–296. 

 https://doi.org/10.1016/j.neubiorev.2016.07.019 

 Burke, H. M., Davis, M. C., Otte, C., & Mohr, D. C. (2005). Depression and cortisol responses to 

 psychological stress: A meta-analysis.  Psychoneuroendocrinology  ,  30  (9), 846–856. 

 https://doi.org/10.1016/j.psyneuen.2005.02.010 

 Câmara, R., & Griessenauer, C. J. (2015). Chapter 27—Anatomy of the Vagus Nerve. In R. S. 

 Tubbs, E. Rizk, M. M. Shoja, M. Loukas, N. Barbaro, & R. J. Spinner (Eds.),  Nerves and 

 Nerve Injuries  (pp. 385–397). Academic Press. 

 https://doi.org/10.1016/B978-0-12-410390-0.00028-7 

 Carlson, N. R., & Birkett, M. A. (2017).  Physiology  of Behavior  (12th ed.). Pearson Education 

 Limited. 

 Cho, S., Fusaroli, R., Pelella, M. R., Tena, K., Knox, A., Hauptmann, A., Covello, M., Russell, A., 

 Miller, J., Hulink, A., Uzokwe, J., Walker, K., Fiumara, J., Pandey, J., Chatham, C., Cieri, 

 C., Schultz, R., Liberman, M., & Parish-morris, J. (2022). Identifying stable 

 speech-language markers of autism in children: Preliminary evidence from a longitudinal 

 303 



 telephony-based study.  Proceedings of the Eighth Workshop on Computational 

 Linguistics and Clinical Psychology  , 40–46. 

 https://doi.org/10.18653/v1/2022.clpsych-1.4 

 Cohen, A. S., McGovern, J. E., Dinzeo, T. J., & Covington, M. A. (2014). Speech deficits in 

 serious mental illness: A cognitive resource issue?  Schizophrenia Research  ,  160  (1), 

 173–179. https://doi.org/10.1016/j.schres.2014.10.032 

 Cohen, S., Janicki-Deverts, D., & Miller, G. E. (2007). Psychological stress and disease.  Journal 

 of the American Medical Association  ,  298  (14), 1685–1687. 

 https://doi.org/10.1001/jama.298.14.1685 

 Cohn, J. F., Kruez, T. S., Matthews, I., Yang, Y., Nguyen, M. H., Padilla, M. T., Zhou, F., & Torre, 

 F. D. (2009). Detecting Depression from Facial Actions and Vocal Prosody.  2009 3rd 

 International Conference on Affective Computing and Intelligent Interaction and 

 Workshops  . https://doi.org/10.1109/ACII.2009.5349358 

 Cohn, M. A., Mehl, M. R., & Pennebaker, J. W. (2004). Linguistic Markers of Psychological 

 Change Surrounding September 11, 2001.  Psychological  Science  ,  15  (10), 687–693. 

 https://doi.org/10.1111/j.0956-7976.2004.00741.x 

 Colombo, D., Fernández-Álvarez, J., Patané, A., Semonella, M., Kwiatkowska, M., 

 García-Palacios, A., Cipresso, P., Riva, G., & Botella, C. (2019). Current State and Future 

 Directions of Technology-Based Ecological Momentary Assessment and Intervention for 

 Major Depressive Disorder: A Systematic Review.  Journal  of Clinical Medicine  ,  8  (4), 465. 

 https://doi.org/10.3390/jcm8040465 

 Coppersmith, G., Dredze, M., & Harman, C. (2014). Quantifying Mental Health Signals in Twitter. 

 Proceedings of the Workshop on Computational Linguistics and Clinical Psychology: 

 304 



 From Linguistic Signal to Clinical Reality  , 51–60. https://doi.org/10.3115/v1/W14-3207 

 Cowen, A. S., Laukka, P., Elfenbein, H. A., Liu, R., & Keltner, D. (2019). The primacy of 

 categories in the recognition of 12 emotions in speech prosody across two cultures. 

 Nature Human Behaviour  ,  3  (4), Article 4. https://doi.org/10.1038/s41562-019-0533-6 

 Cramer, A. O. J., Borkulo, C. D. van, Giltay, E. J., Maas, H. L. J. van der, Kendler, K. S., 

 Scheffer, M., & Borsboom, D. (2016). Major Depression as a Complex Dynamic System. 

 PLOS ONE  ,  11  (12), e0167490. https://doi.org/10.1371/journal.pone.0167490 

 Cramer, A. O. J., Waldorp, L. J., van der Maas, H. L. J., & Borsboom, D. (2010). Comorbidity: A 

 network perspective.  Behavioral and Brain Sciences  ,  33  (2–3), 137–150. 

 https://doi.org/10.1017/S0140525X09991567 

 de Boer, N. S., de Bruin, L. C., Geurts, J. J. G., & Glas, G. (2021). The Network Theory of 

 Psychiatric Disorders: A Critical Assessment of the Inclusion of Environmental Factors. 

 Frontiers in Psychology  ,  12  . 

 https://www.frontiersin.org/articles/10.3389/fpsyg.2021.623970 

 Diamond, L. M., & Alley, J. (2022). Rethinking minority stress: A social safety perspective on the 

 health effects of stigma in sexually-diverse and gender-diverse populations. 

 Neuroscience & Biobehavioral Reviews  ,  138  , 104720. 

 https://doi.org/10.1016/j.neubiorev.2022.104720 

 Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical 

 integration and synthesis of laboratory research.  Psychological Bulletin  ,  130  (3), 

 355–391. https://doi.org/10.1037/0033-2909.130.3.355 

 Donker, T., Petrie, K., Proudfoot, J., Clarke, J., Birch, M.-R., & Christensen, H. (2013). 

 Smartphones for Smarter Delivery of Mental Health Programs: A Systematic Review. 

 305 



 Journal of Medical Internet Research  ,  15  (11), e2791. https://doi.org/10.2196/jmir.2791 

 Duffy, J. R. (2000). Motor Speech Disorders: Clues to Neurologic Diagnosis. In C. H. Adler & J. 

 E. Ahlskog (Eds.),  Parkinson’s Disease and Movement  Disorders: Diagnosis and 

 Treatment Guidelines for the Practicing Physician  (pp. 35–53). Humana Press. 

 https://doi.org/10.1007/978-1-59259-410-8_2 

 Eagle, N., & Pentland, A. (Sandy). (2006). Reality mining: Sensing complex social systems. 

 Personal and Ubiquitous Computing  ,  10  (4), 255–268. 

 https://doi.org/10.1007/s00779-005-0046-3 

 Faurholt-Jepsen, M., Bauer, M., & Kessing, L. V. (2018). Smartphone-based objective 

 monitoring in bipolar disorder: Status and considerations.  International Journal of 

 Bipolar Disorders  ,  6  (1), 6. https://doi.org/10.1186/s40345-017-0110-8 

 Firth, J., Torous, J., Nicholas, J., Carney, R., Rosenbaum, S., & Sarris, J. (2017). Can 

 smartphone mental health interventions reduce symptoms of anxiety? A meta-analysis 

 of randomized controlled trials.  Journal of Affective  Disorders  ,  218  , 15–22. 

 https://doi.org/10.1016/j.jad.2017.04.046 

 Fletcher, J. (2007). What is heterogeneity and is it important?  BMJ : British Medical Journal  , 

 334  (7584), 94–96. https://doi.org/10.1136/bmj.39057.406644.68 

 Frisell, T., Lichtenstein, P., Rahman, Q., & Långström, N. (2010). Psychiatric morbidity 

 associated with same-sex sexual behaviour: Influence of minority stress and familial 

 factors.  Psychological Medicine  ,  40  (2), 315–324. 

 https://doi.org/10.1017/S0033291709005996 

 Fromkin, V., A. (1973). Speech Errors as Linguistic Evidence. In  Speech Errors as Linguistic 

 Evidence  . De Gruyter Mouton. https://doi.org/10.1515/9783110888423 

 306 



 Garcia-Ceja, E., Riegler, M., Nordgreen, T., Jakobsen, P., Oedegaard, K. J., & Tørresen, J. 

 (2018). Mental health monitoring with multimodal sensing and machine learning: A 

 survey.  Pervasive and Mobile Computing  ,  51  , 1–26. 

 https://doi.org/10.1016/j.pmcj.2018.09.003 

 Gee, B. L., Han, J., Benassi, H., & Batterham, P. J. (2020). Suicidal thoughts, suicidal 

 behaviours and self-harm in daily life: A systematic review of ecological momentary 

 assessment studies.  DIGITAL HEALTH  ,  6  , 2055207620963958. 

 https://doi.org/10.1177/2055207620963958 

 Giannakakis, G., Grigoriadis, D., Giannakaki, K., Simantiraki, O., Roniotis, A., & Tsiknakis, M. 

 (2022). Review on Psychological Stress Detection Using Biosignals.  IEEE Transactions 

 on Affective Computing  ,  13  (1), 440–460. https://doi.org/10.1109/TAFFC.2019.2927337 

 Giddens, C. L., Barron, K. W., Byrd-Craven, J., Clark, K. F., & Winter, A. S. (2013). Vocal indices 

 of stress: A review.  Journal of Voice  ,  27  (3), 390.e21-390.e29. 

 https://doi.org/10.1016/j.jvoice.2012.12.010 

 Godin, K. W., & Hansen, J. H. L. (2015). Physical task stress and speaker variability in voice 

 quality.  Eurasip Journal on Audio, Speech, and Music  Processing  ,  2015  (1). 

 https://doi.org/10.1186/s13636-015-0072-7 

 Hansen, J. H. L., & Patil, S. (2007). Speech Under Stress: Analysis, Modeling and Recognition. 

 In C. Müller (Ed.),  Speaker Classification I: Fundamentals,  Features, and Methods  (pp. 

 108–137). Springer. https://doi.org/10.1007/978-3-540-74200-5_6 

 Hemmeter, U.-M., Hemmeter-Spernal, J., & Krieg, J.-C. (2010). Sleep deprivation in depression. 

 Expert Review of Neurotherapeutics  ,  10  (7), 1101–1115. 

 https://doi.org/10.1586/ern.10.83 

 307 



 Jürgens, U. (2002). Neural pathways underlying vocal control.  Neuroscience & Biobehavioral 

 Reviews  ,  26  (2), 235–258. https://doi.org/10.1016/S0149-7634(01)00068-9 

 Juster, R.-P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress 

 and impact on health and cognition.  Neuroscience &  Biobehavioral Reviews  ,  35  (1), 

 2–16. https://doi.org/10.1016/j.neubiorev.2009.10.002 

 Kappen, M., Hoorelbeke, K., Madhu, N., Demuynck, K., & Vanderhasselt, M.-A. (2022). Speech 

 as an indicator for psychosocial stress: A network analytic approach.  Behavior 

 Research Methods  ,  54  (2), 910–921. https://doi.org/10.3758/s13428-021-01670-x 

 Kappen, M., Van Der Donckt, J., Vanhollebeke, G., Allaert, J., Degraeve, V., Madhu, N., Van 

 Hoecke, S., & Vanderhasselt, M.-A. (2022). Acoustic speech features in social 

 comparison: How stress impacts the way you sound.  Scientific Reports  ,  12  (1), Article 1. 

 https://doi.org/10.1038/s41598-022-26375-9 

 Kappen, M., Vanderhasselt, M.-A., & Slavich, G. M. (2023). Speech as a promising biosignal in 

 precision psychiatry.  Neuroscience & Biobehavioral  Reviews  ,  148  , 105121. 

 https://doi.org/10.1016/j.neubiorev.2023.105121 

 Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The ’Trier social stress test’—A tool 

 for investigating psychobiological stress responses in a laboratory setting. 

 Neuropsychobiology  ,  28  (1–2), 76–81. https://doi.org/10.1159/000119004 

 König, A., Riviere, K., Linz, N., Lindsay, H., Elbaum, J., Fabre, R., Derreumaux, A., & Robert, P. 

 (2021). Measuring Stress in Health Professionals Over the Phone Using Automatic 

 Speech Analysis During the COVID-19 Pandemic: Observational Pilot Study.  Journal of 

 Medical Internet Research  ,  23  (4), e24191. https://doi.org/10.2196/24191 

 Koops, S., Brederoo, S. G., de Boer, J. N., Nadema, F. G., Voppel, A. E., & Sommer, I. E. (2021). 

 308 



 Speech as a Biomarker for Depression.  CNS & Neurological Disorders - Drug Targets  , 

 20  . https://doi.org/10.2174/1871527320666211213125847 

 Kurniawan, H., Maslov, A. V., & Pechenizkiy, M. (2013). Stress Detection from Speech and 

 Galvanic Skin Response Signals.  Proceedings of the  26th IEEE International Symposium 

 on Computer-Based Medical Systems  , 209–214. 

 Langer, M., König, C. J., Siegel, R., Fredenhagen, T., Schunck, A. G., Hähne, V., & Baur, T. 

 (2022). Vocal-stress diary: A longitudinal investigation of the association of everyday 

 work stressors and human voice features.  Psychological  Science  ,  33  (7), 1027–1039. 

 https://doi.org/10.1177/09567976211068110 

 Lara, O. D., & Labrador, M. A. (2013). A Survey on Human Activity Recognition using Wearable 

 Sensors.  IEEE Communications Surveys & Tutorials  ,  15  (3), 1192–1209. 

 https://doi.org/10.1109/SURV.2012.110112.00192 

 Li, J., Wang, S., Chao, Y., Liu, X., & Meng, H. (2022). Context-aware Multimodal Fusion for 

 Emotion Recognition.  Interspeech 2022  , 2013–2017. 

 https://doi.org/10.21437/Interspeech.2022-10592 

 Li, N., Li, N., Guo, M., & Feng, J. (2021). Research of Speech Biomarkers for Stress 

 Recognition Using Linear and Nonlinear Features.  2021  7th International Conference on 

 Computer and Communications (ICCC)  , 509–513. 

 https://doi.org/10.1109/ICCC54389.2021.9674330 

 LiKamWa, R., Liu, Y., Lane, N. D., & Zhong, L. (2011).  Can Your Smartphone Infer Your Mood? 

 1–5. 

 Low, D. M., Bentley, K. H., & Ghosh, S. S. (2020). Automated assessment of psychiatric 

 disorders using speech: A systematic review.  Laryngoscope  Investigative 

 309 



 Otolaryngology  ,  5  (1), 96–116. https://doi.org/10.1002/lio2.354 

 Lu, H., Frauendorfer, D., Rabbi, M., Mast, M. S., Chittaranjan, G. T., Campbell, A. T., 

 Gatica-Perez, D., & Choudhury, T. (2012). StressSense: Detecting stress in 

 unconstrained acoustic environments using smartphones.  Proceedings of the 2012 

 ACM Conference on Ubiquitous Computing - UbiComp ’12  ,  351–360. 

 https://doi.org/10.1145/2370216.2370270 

 Manuck, S. B., Cohen, S., Rabin, B. S., Muldoon, M. F., & Bachen, E. A. (1991). Individual 

 Differences in Cellular Immune Response to Stress.  Psychological Science  ,  2  (2), 

 111–115. 

 Marmar, C. R., Siegel, C., Brown, A. D., Laska, E., Richey, C., Amara, D. A., Smith, J., Knoth, 

 B., & Tsiartas, A. (2019).  Speech ‐ based markers  for posttraumatic stress disorder in US 

 veterans  .  December 2018  , 607–616. https://doi.org/10.1002/da.22890 

 Martin, V. P., Rouas, J.-L., Boyer, F., & Philip, P. (2021). Automatic Speech Recognition Systems 

 Errors for Objective Sleepiness Detection Through Voice.  Interspeech 2021  , 2476–2480. 

 https://doi.org/10.21437/Interspeech.2021-291 

 Martin, V. P., Rouas, J.-L., Thivel, P., & Krajewski, J. (2019). Sleepiness detection on read 

 speech using simple features.  2019 International Conference  on Speech Technology 

 and Human-Computer Dialogue (SpeD)  , 1–7. 

 https://doi.org/10.1109/SPED.2019.8906577 

 Meyer, I. H. (2003). Prejudice, social stress, and mental health in lesbian, gay, and bisexual 

 populations: Conceptual issues and research evidence.  Psychological Bulletin  ,  129  , 

 674–697. https://doi.org/10.1037/0033-2909.129.5.674 

 Monkhouse, S. (2005).  Cranial Nerves: Functional Anatomy  .  Cambridge University Press. 

 310 



 Moore, R. C., Depp, C. A., Wetherell, J. L., & Lenze, E. J. (2016). Ecological momentary 

 assessment versus standard assessment instruments for measuring mindfulness, 

 depressed mood, and anxiety among older adults.  Journal  of Psychiatric Research  ,  75  , 

 116–123. https://doi.org/10.1016/j.jpsychires.2016.01.011 

 Mote, J., & Fulford, D. (2020). Ecological momentary assessment of everyday social 

 experiences of people with schizophrenia: A systematic review.  Schizophrenia 

 Research  ,  216  , 56–68. https://doi.org/10.1016/j.schres.2019.10.021 

 Parry, J., DeMattos, E., Klementiev, A., Ind, A., Morse-Kopp, D., Clarke, G., & Palaz, D. (2022). 

 Speech Emotion Recognition in the Wild using Multi-task and Adversarial Learning. 

 Interspeech 2022  , 1158–1162. https://doi.org/10.21437/Interspeech.2022-10581 

 Paulmann, S., Furnes, D., Bøkenes, A. M., & Cozzolino, P. J. (2016). How Psychological Stress 

 Affects Emotional Prosody.  PLOS ONE  ,  11  (11), e0165022. 

 https://doi.org/10.1371/journal.pone.0165022 

 Pennebaker, J. W., Mehl, M. R., & Niederhoffer, K. G. (2003). Psychological Aspects of Natural 

 Language Use: Our Words, Our Selves.  Annual Review  of Psychology  ,  54  (1), 547–577. 

 https://doi.org/10.1146/annurev.psych.54.101601.145041 

 Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R., & Borsboom, D. (2020). The Network 

 Approach to Psychopathology: A Review of the Literature 2008–2018 and an Agenda 

 for Future Research.  Psychological Medicine  ,  50  (3),  353–366. 

 https://doi.org/10.1017/S0033291719003404 

 Rodellar-Biarge, V., Palacios-Alonso, D., Nieto-Lluis, V., & Gómez-Vilda, P. (2015). Towards the 

 search of detection in speech-relevant features for stress.  Expert Systems  ,  32  (6), 

 710–718. https://doi.org/10.1111/exsy.12109 

 311 



 Rude, S. S., Gortner, E., & Pennebaker, J. W. (2004). Language use of depressed and 

 depression-vulnerable college students.  Cognition  & Emotion  ,  18  (8), 1121–1133. 

 https://doi.org/10.1080/02699930441000030 

 Serre, F., Fatseas, M., Swendsen, J., & Auriacombe, M. (2015). Ecological momentary 

 assessment in the investigation of craving and substance use in daily life: A systematic 

 review.  Drug and Alcohol Dependence  ,  148  , 1–20. 

 https://doi.org/10.1016/j.drugalcdep.2014.12.024 

 Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological Momentary Assessment.  Annual 

 Review of Clinical Psychology  ,  4  (1), 1–32. 

 https://doi.org/10.1146/annurev.clinpsy.3.022806.091415 

 Shuman, V., Scherer, K., Fontaine, J., & Soriano, C. (2015).  The GRID meets the Wheel: 

 Assessing emotional feeling via self-report  . https://doi.org/10.13140/RG.2.1.2694.6406 

 Slavich, G. M., & Irwin, M. R. (2014). From Stress to Inflammation and Major Depressive 

 Disorder: A Social Signal Transduction Theory of Depression.  Psychological Bulletin  , 

 140  (3), 774–815. https://doi.org/10.1037/a0035302 

 Slavich, G. M., Roos, L. G., Mengelkoch, S., Webb, C. A., Shattuck, E. C., Moriarity, D. P., & 

 Alley, J. C. (2023). Social Safety Theory: Conceptual foundation, underlying 

 mechanisms, and future directions.  Health Psychology  Review  , 1–55. 

 https://doi.org/10.1080/17437199.2023.2171900 

 Slavich, G. M., Taylor, S., Picard, R. W., Slavich, G. M., Taylor, S., & Stress, R. W. P. (2019). 

 Stress measurement using speech: Recent advancements , validation issues , and 

 ethical and privacy considerations  .  3890  . 

 https://doi.org/10.1080/10253890.2019.1584180 

 312 



 Tausczik, Y. R., & Pennebaker, J. W. (2010). The Psychological Meaning of Words: LIWC and 

 Computerized Text Analysis Methods.  Journal of Language  and Social Psychology  , 

 29  (1), 24–54. https://doi.org/10.1177/0261927X09351676 

 Torous, J., Friedman, R., & Keshavan, M. (2014). Smartphone Ownership and Interest in Mobile 

 Applications to Monitor Symptoms of Mental Health Conditions.  JMIR MHealth and 

 UHealth  ,  2  (1), e2994. https://doi.org/10.2196/mhealth.2994 

 Van Puyvelde, M., Neyt, X., McGlone, F., & Pattyn, N. (2018). Voice stress analysis: A new 

 framework for voice and effort in human performance.  Frontiers in Psychology  ,  9  , 1994. 

 https://doi.org/10.3389/fpsyg.2018.01994 

 Voppel, A. E., de Boer, J. N., Brederoo, S. G., Schnack, H. G., & Sommer, I. E. C. (2022). 

 Semantic and phonetic markers in schizophrenia-spectrum disorders; a combinatory 

 machine learning approach  [Preprint]. Psychiatry and  Clinical Psychology. 

 https://doi.org/10.1101/2022.07.13.22277577 

 Wagner, P., Trouvain, J., & Zimmerer, F. (2015). In defense of stylistic diversity in speech 

 research.  Journal of Phonetics  ,  48  , 1–12. https://doi.org/10.1016/j.wocn.2014.11.001 

 Walton, G. M., & Cohen, G. L. (2011). A Brief Social-Belonging Intervention Improves Academic 

 and Health Outcomes of Minority Students.  Science  ,  331  (6023), 1447–1451. 

 https://doi.org/10.1126/science.1198364 

 Wang, M., & Saudino, K. J. (2011). Emotion regulation and stress.  Journal of Adult 

 Development, 18  (2), 95-103. https://doi.org/10.1007/s10804-010-9114-7 

 Wichers, M. (2014). The dynamic nature of depression: A new micro-level perspective of mental 

 disorder that meets current challenges.  Psychological  Medicine  ,  44  (7), 1349–1360. 

 https://doi.org/10.1017/S0033291713001979 

 313 



 Xu, Y. (2010). In defense of lab speech.  Journal of Phonetics  ,  38  (3), 329–336. 

 https://doi.org/10.1016/j.wocn.2010.04.003 

 Zhu-Zhou, F., Gil-Pita, R., García-Gómez, J., & Rosa-Zurera, M. (2022). Robust Multi-Scenario 

 Speech-Based Emotion Recognition System.  Sensors  ,  22  (6), 2343. 

 https://doi.org/10.3390/s22062343 

 314 



 Personal Contributions 

 Chapter 2: 

 Mitchel  Kappen  :  Conceptualization,  Methodology,  Formal  analysis,  Data  Curation,  Writing- 

 Original  Draft,  Visualization  Kristof  Hoorelbeke:  Conceptualization,  Methodology,  Formal 

 analysis,  Data  Curation,  Writing  -  Review  &  Editing,  Visualization  Nilesh  Madhu: 

 Conceptualization,  Methodology,  Resources,  Writing  -  Review  &  Editing  Kris  Demuynck  : 

 Conceptualization,  Resources,  Writing  -  Review  &  Editing  Marie-Anne  Vanderhasselt: 

 Conceptualization, Resources, Writing - Review & Editing, Supervision, Funding acquisition 

 Chapter 3: 

 Mitchel  Kappen  :  Conceptualization,  Methodology,  Formal  analysis,  Investigation,  Data 

 Curation,  Writing-  Original  Draft,  Visualization  Jonas  van  der  Donck  t:  Conceptualization, 

 Methodology,  Software,  Data  Curation,  Writing  -  Original  Draft  Gert  Vanhollebeke  : 

 Conceptualization,  Methodology,  Investigation,  Data  Curation,  Writing  -  Review  &  Editing  Jens 

 Allaert:  Methodology,  Writing  -  Review  &  Editing  Vic  Degraeve:  Software,  Writing  -  Review  & 

 Editing  Nilesh  Madhu:  Conceptualization,  Resources,  Writing  -  Review  &  Editing  Sofie  van 

 Hoecke:  Conceptualization,  Resources,  Writing  -  Review  &  Editing,  Supervision,  Funding 

 acquisition  Marie-Anne  Vanderhasselt:  Conceptualization,  Resources,  Writing  -  Review  & 

 Editing, Supervision, Funding acquisition 

 Chapter 4: 

 Jonas  Van  Der  Donckt:  Conceptualization,  Methodology,  Software,  Validation,  Formal 

 Analysis,  Data  Curation,  Writing  -  Original  Draft,  Visualization.  Mitchel  Kappen: 

 Conceptualization,  Methodology,  Validation,  Formal  Analysis,  Data  Curation,  Writing  -  Original 

 315 



 Draft,  Visualization.  Vic  Degraeve:  Software.  Kris  Demuynck:  Conceptualization,  Writing  - 

 Review  &  Editing.  Marie-Anne  Vanderhasselt:  Conceptualization,  Methodology,  Supervision, 

 Writing  -  Review  &  Editing.  Sofie  Van  Hoecke:  Conceptualization,  Methodology,  Supervision, 

 Writing - Review & Editing, Funding acquisition. 

 Chapter 5: 

 Mitchel  Kappen:  Conceptualization,  Methodology,  Formal  Analysis,  Data  Curation,  Writing  - 

 Original  Draft,  Writing  -  Review  &  Editing,  Visualization  Gert  Vanhollebeke:  Conceptualization, 

 Methodology,  Software,  Investigation,  Data  Curation,  Writing  -  Review  &  Editing  Jonas  van  der 

 Donckt:  Conceptualization,  Methodology,  Formal  Analysis,  Data  Curation,  Writing  -  Review  & 

 Editing  Sofie  van  Hoecke:  Conceptualization,  Writing  -  Review  &  Editing,  Supervision 

 Marie-Anne  Vanderhasselt:  Conceptualization,  Writing  -  Review  &  Editing,  Supervision, 

 Project administration, Funding acquisition 

 Chapter 6: 

 Mitchel  Kappen  :  Conceptualization,  Writing  -  Original  Draft,  Funding  acquisition  Marie-Anne 

 Vanderhasselt  Conceptualization,  Writing  -  Review  &  Editing,  Funding  acquisition  George 

 Slavich:  Conceptualization, Writing- Original Draft,  Supervision 

 316 



 Curriculum Vitae 

 Mitchel Kappen  MSc 

 HOME:  Lange Kruisstraat 12-1  UNIVERSITY:  Ghent  University 
 9000, Ghent, Belgium  Experimental Psyhiatry Lab 

 Department of Head & Skin 
 Tel:  +316 55 68 44 63  +32493 75 64 96 
 E-Mail:  mitchelkappen@gmail.com  Mitchel.Kappen@UGent.be 

 RESEARCH INTERESTS: 

 My current research is centered around novel methods of measuring physiological and psychological 
 activity. More specifically, detecting mental states (predominantly stress) from speech fragments or facial 
 video recordings. 

 EDUCATION: 

 2019 – 2023  PhD in Life Sciences 
 Ghent University – Experimental Psychiatry Lab, Belgium 
 Supervised by Professor Marie-Anne Vanderhasselt 
 Due for submission September 2023 

 Projects: 
 -  Detecting stress from speech fragments. Developing new paradigms to record speech 

 in a naturalistic way in a controlled setting whilst simultaneously collecting 
 high-quality physiological data and querying psychological constructs to develop 
 models using phonetic and prosodic features of speech. 

 -  Relapse prevention after ECT using CCT for treatment-resistant depression. Relapse 
 after a successful electroconvulsive therapy happens at high prevalence. In our RCT 
 we offer a two-week cognitive intervention after ECT is concluded after which 
 patients are biweekly monitored over a 6-month time period. 

 -  Stress, rumination, and (im/ex)plicit emotion regulation during the different phases of 
 the menstrual cycle in women with premenstrual syndrome and healthy controls. 

 317 

mailto:mitchelkappen@gmail.com


 Premenstrual symptoms occur in more than 60% of women, however, its origin is 
 still debated. We conducted an online study with 500+ participants, consisting of both 
 women with PMS and healthy controls, and conducted questionnaires and an 
 experiment consisting of rating emotional stimuli whilst their faces are recorded. This 
 enables us to compare one’s capabilities of introspective capabilities with regard to 
 their emotions as well as group differences in women with PMS as compared to 
 healthy controls. 

 2018 – 2019  MSc in Applied Cognitive Psychology (Magna Cum Laude) 
 Utrecht University, the Netherlands 

 Thesis (9/10): Predicting Person-Organization and Person-Job Fit Objectively: Stress, 
 motivation, and Nervousness During a Video-Based Pre-hire screening 
 Supervisor: Prof. Marnix Naber 

 2013 – 2018  BSc in Cognitive and Neurobiological Psychology 
 Utrecht University, the Netherlands 

 Thesis (8.5/10): Are Visuo-spatial Working Memory and Fragile Memory Qualitatively 
 Different Memory Systems? 
 Supervisor: Paul Zerr 

 2006 – 2012  Bilingual grammar school 
 International Baccalaureate English Higher Level (Near Native) 
 Elde College, Schijndel, the Netherlands 

 RESEARCH EXPERIENCE (IN ADDITION TO EDUCATION): 

 Oct 2022 -  UCLA Laboratory for Stress Assessment and Research, Stanford University, United 
 Dec 2022  States 

 As part of my PhD I visited prof. dr. George M. Slavich at Stanford University. During 
 this stay, I expanded my knowledge of lifetime stressors and adverse childhood 
 experiences (ACEs). We wrote a viewpoint on speech in precision psychiatry and started 
 a multi-year collaboration on a state-wide research project on ACEs, precision psychiatry 
 interventions, and a first endeavor to investigate whether speech contains information on 
 chronic or early life stressors. 

 Feb 2019 -  Alpha.One / Expoze.io, Rotterdam, the Netherlands 
 Sep 2019 

 318 



 I worked here as a junior researcher in which I was responsible for setting up online 
 experiments enabling us to test implicit behaviors as well as collect training data for our 
 predictive eye tracking models. In addition, collected and analyzed EEG data, all tasks 
 were ordered by the Erasmus school of Management and big commercial companies. 

 Sep 2018 –  Neurolytics, Utrecht, the Netherlands 
 Feb 2019 

 In this start-up, I helped develop the testing environment and first models in predicting 
 the match between an employer and an applicant. Using numerous metrics such as human 
 resource questionnaires, facial coding, and remote PPG. 

 Aug 2017 -  Krigolson Lab, University of Victoria, Canada 
 July 2018 

 While I was visiting the University of Victoria for an exchange semester, I volunteered at 
 the Krigolson Lab as a research assistant. I gained experience with conducting and 
 analyzing EEG, eye-tracking, and physiological data. After graduation, I stayed for 
 another semester to commit full-time to set up my own project at this lab. 

 ADDITIONAL WORK HISTORY: 

 2012 – 2019  Jobs next to studies 

 I have had numerous jobs in sales, recruitment, administration, and hospitality in the 
 evening and weekend hours varying from 10 to 32 hours a week. 
 In addition, I worked for 5 years at a smartphone and computer refurbishing company 
 doing customer support, sales, and search engine optimization, as well as assisting in 
 repairs. 

 2012 – 2022  Extracurriculars 

 Participated in numerous committees organizing extracurricular activities. Took one 
 full-time board year (student faculty association) in which I was responsible for 
 acquisition, PR, and team coordination as well as a part-time board year (Utrecht 
 University fund) in which my job was assessing grants for student initiatives. 
 Furthermore, I acted as the vice president of the UVic Bitcoin Club and have participated 
 in scientific outreach activities (Let’s Talk Science, Canada) teaching elementary school 
 children about the brain and organizing symposia on neuroscience for high school 
 students. Moreover, I was a founding committee member for the multi-university 2-day 
 workshop on Machine Learning in Psychiatry. 

 319 



 SKILLS: 

 Languages 
 ●  Dutch (mother tongue) 
 ●  English (near-native) 
 ●  German (basic) 

 Software & Programming (  https://github.com/mitchelkappen  ) 
 ●  Python 
 ●  R 
 ●  Matlab 
 ●  JavaScript 
 ●  Machine Learning 
 ●  Brainvision Analyser & EEGLab 
 ●  Photoshop 
 ●  InDesign 

 Research 
 ●  Remote measures 

 o  Speech analysis (acoustic + semantic), rPPG, (automated) FACS, portable EEG systems 
 (e.g. MUSE) 

 ●  ECG 
 ●  EDA 
 ●  Respiration 
 ●  EEG (Brainvision, BioSemi, Muse, EGI) 
 ●  Eyetracking (EyeLink 2, EyeLink 1000, Webcam tracking) 

 REFERENCES: 

 Professor Marie-Anne Vanderhasselt, Ghent University, Belgium,  marie-anne.vanderhasselt@ugent.be 
 Professor Olave Krigolson, University of Victoria, Canada,  krigolso@uvic.ca 
 Professor Marnix Naber, Utrecht University, the Netherlands,  m.naber@uu.nl 

 PUBLICATIONS: 

 Vanhollebeke, G.,  Kappen, M.  , De Raedt, R., Baeken,  C., van Mierlo, P., & Vanderhasselt, M. A. (2023). 
 Effects of acute psychosocial stress on source level EEG power and functional connectivity measures. 
 Scientific Reports  ,  13  (1), 8807. 

 Kuipers, M.,  Kappen, M.  , & Naber, M. (2023). How nervous  am I? How computer vision succeeds and 
 humans fail in interpreting state anxiety from dynamic facial behaviour.  Cognition and Emotion  , 1-11. 

 320 

https://github.com/mitchelkappen
mailto:marie-anne.vanderhasselt@ugent.be
mailto:krigolso@uvic.ca
mailto:m.naber@uu.nl


 Kappen, M.  , Vanderhasselt, M. A., & Slavich, G. M. (2023). Speech as a Promising Biosignal in 
 Precision Psychiatry.   Neuroscience & Biobehavioral  Reviews  , 105121. 

 De Smet, S., Ottaviani, C., Verkuil, B.,  Kappen, M.  ,  Baeken, C., & Vanderhasselt, M. A. (2023). Effects 
 of non‐invasive vagus nerve stimulation on cognitive and autonomic correlates of perseverative 
 cognition.   Psychophysiology  , e14250. 

 Razza, L. B., Luethi, M. S., Zanão, T., De Smet, S., Buchpiguel, C., Busatto, G., Pereira, J., Klein, I., 
 Kappen, M.,  Morena, M., Baeken, C., Vanderhasselt,  M. A., & Brunoni, A. R. (2023). Transcranial direct 
 current stimulation versus intermittent theta-burst stimulation for the improvement of working memory 
 performance.  International Journal of Clinical and  Health Psychology  , 23(1), 100334. 

 Kappen, M.,  Raeymakers, S., Weyers, S., & Vanderhasselt,  M. A. (2022). Stress and Rumination in 
 Premenstrual Syndrome (PMS): identifying stable and menstrual cycle-related differences in PMS 
 symptom severity.  Journal of Affective Disorders.  Preprint available: https://psyarxiv.com/nhvb2 

 Xu, Y.,  Kappen, M.,  Peremans, K., De Bundel, D., Van  Eeckhaut, A., Van Laeken, N., De Vos, F., 
 Dobbeleir, A., Saunders, J. H., & Baeken, C. (2022). Accelerated HF-rTMS Modifies SERT Availability 
 in the Subgenual Anterior Cingulate Cortex: A Canine [11C] DASB Study on the Serotonergic System. 
 Journal of clinical medicine  , 11(6), 1531. 

 Kappen, M.,  Hoorelbeke, K., Madhu, N., Demuynck, K.,  & Vanderhasselt, M. A. (2022). Speech as an 
 indicator for psychosocial stress: A network analytic approach.  Behavior Research Methods  , 54(2), 
 910-921. 

 Kappen, M.,  & Naber, M. (2021). Objective and bias-free  measures of candidate motivation during job 
 applications.  Scientific reports  , 11(1), 1-8. 

 Zerr, P., Gayet, S., van den Esschert, F.,  Kappen,  M.,  Olah, Z., & Van der Stigchel, S. (2021). The 
 development of retro-cue benefits with extensive practice: Implications for capacity estimation and 
 attentional states in visual working memory.   Memory  & Cognition  , 1-14. 

 Van de Velde, N.,  Kappen, M.,  Koster, E. H., Hoorelbeke,  K., Tandt, H., Verslype, P., ... & Vanderhasselt, 
 M. A. (2020). Cognitive remediation following electroconvulsive therapy in patients with treatment 
 resistant depression: randomized controlled trial of an intervention for relapse prevention–study 
 protocol.   BMC psychiatry  ,   20  (1), 1-12. 

 Williams, C. C.,  Kappen, M.,  Hassall, C. D., Wright,  B., & Krigolson, O. E. (2019). Thinking theta and 
 alpha: Mechanisms of intuitive and analytical reasoning.   NeuroImage  ,   189  ,  574-580. 

 In review: 

 Kappen, M.  , Vanhollebeke, G., Van Der Donckt, J.,  Van Hoecke, S., & Vanderhasselt, M. A. (2023). 
 Acoustic and Prosodic Speech Features Reflect Physiological Stress but Not Isolated Negative Affect: A 
 Multi-paradigm Study on Psychosocial Stressors. 

 321 



 Van Der Donckt, J.*,  Kappen, M.*  , Degraeve, V., Demuynck, K., Vanderhasselt, M. A., & Van Hoecke, 
 S. (2023). Ecologically Valid Speech Collection in Behavioral Research: The Ghent Semi-spontaneous 
 Speech Paradigm (GSSP). 

 Li, Z., Pulopulos, M., Allaert, J., De Smet, S.,  Kappen  ,  M., Puttevils, L., ... & Vanderhasselt, M. A. 
 (2022). Resting HRV as a trait marker of rumination in healthy individuals? A large cross-sectional 
 analysis.   Authorea Preprints  . 

 Oral presentations: 

 Kappen, M.,  Van der Donckt, J.,  Vanhollebeke, G.,  Van Hoecke, S., Vanderhasselt, M.A. (2022, 
 September). How your Speech Responds to Stress: the Validation of Acoustic, Prosodic, and Semantic 
 Speech Features in a Multi-Paradigm Stress-Induction Task, Society for Psychophysiological Research, 
 Vancouver, BC, Canada. 

 Kappen, M.,  Vanhollebeke, G., Van der Donckt, J.,  Coquyt, I., Van Hoecke, S., & Vanderhasselt, M.A. 
 (2022, June). The Effects of Stress on the Voice: Acoustic Features from Semi-Spontaneous Speech in a 
 Multi-Paradigm Stress Induction Task, 2022 Annual Meeting of the Belgian Association of Psychological 
 Sciences, Leuven, Belgium. 

 Kappen, M.,  Kuipers, M., & Naber, M.M. (2022, April).  Where Computers Outperform Humans: 
 Objective and Bias-Free Measures of Complex Emotions and Mental States using Facial Nonverbal 
 Behavior, 18  th  NVP Winter Conference on Brain and  Cognition, Egmond aan Zee, the Netherlands. 

 Naber, M. M.,  Kuipers, M., &  Kappen, M.  (2021, December).  Interpreting facial features to determine an 
 observer's attention to a video. In PERCEPTION (Vol. 50, No. 1_ SUPPL, pp. 97-97). 

 Kappen, M.,  Hassall, C.D., & Krigolson, O.E. (2018).  Electroencephalographic Correlates for Risk 
 Taking and Aversion in Financial Decision Making. University of Victoria’s Making Waves, Victoria, BC, 
 Canada. 

 Poster presentations: 

 Kappen, M.,  Van der Donckt, J.,  Vanhollebeke, G.,  Van Hoecke, S., Vanderhasselt, M.A. (2022, 
 September). How your Speech Responds to Stress: the Validation of Acoustic, Prosodic, and Semantic 
 Speech Features in a Multi-Paradigm Stress-Induction Task, Society for Psychophysiological Research, 
 Vancouver, BC, Canada. 

 Kappen, M.,  DeSmet, S., Allaert, J., Schoonjans, E.,  VanderDonckt, J., Raeymakers, S., & Vanderhasselt, 
 M. A. (2022). The Interaction of Transcranial Direct Current Stimulation (tDCS) and Pace Breathing on 
 Acoustic and Lexical Speech Features in the Context of Stress. Psychiatria Danubina, 34(suppl 3), 35-35. 

 322 



 Xu, Y.,  Kappen, M.,  Peremans, K., DeBundel, D., VanEeckhaut, A., VanLaeken, N., De Vos, F., 
 Dobbelei, A., Saunders, J. H., & Baeken, C. (2022). Sert Availability Modified by Accelerated HF-rTMS 
 in the Subgenual Anterior Cingulate Cortex: a Canine [11C]-DASB Positron Emission Tomography 
 Study.  Psychiatria Danubina  ,   34  (suppl 3), 44-44. 

 Naber, M.,  &  Kappen, M.  (2021). How motivated do I  look? How humans fail and computer vision 
 succeeds in interpreting facial behavior. Journal of Vision, 21(9), 1978-1978. 

 Williams, C.C.,  Kappen, M.,  Hassall, C.D., Wright,  B., & Krigolson, O.E. (2018). Cognitive Control and 
 Attention: Neurocognitive Mechanisms of System 1 and System 2 Thinking. Society for 
 Psychophysiological Research Meeting, Quebec City, QC. 

 Kappen, M.,  Hassall, C.D., & Krigolson, O.E. (2018).  Electroencephalographic Correlates for Risk and 
 Ambiguity in Financial Decision Making. Canadian Neuroscience Annual Meeting, Vancouver, BC, 
 Canada. 

 Kappen, M.,  Hassall, C.D., & Krigolson, O.E. (2018).  Neurophysiological Representations of Risk 
 Taking and Risk Aversion. Northwest Cognition and Memory 2018, Richmond, BC, Canada. 

 Powell, G.,  Kappen, M.,  Berman, T., Colino, F.L.,  & Krigolson, O.E. (2018). The Effect of Feedback 
 Frequency on the P300 for Motor Learning. Northwest Cognition and Memory 2018, Richmond, BC, 
 Canada. 

 MEDIA: 

 Libelle (2022, September 14). Wat vertelt je menstruele cyclus over je gezondheid? De expert legt uit. 
 https://www.libelle.be/gezond/cyclus-en-gezondheid/ 

 Goed gevoel, DPG media (2022, July 20). Had ik dat maar eerder geweten! Physical print. 

 Knack (2021, January 6). Het premenstrueel syndroom is nog steeds een ongekende problematiek. 
 https://www.knack.be/nieuws/gezondheid/het-premenstrueel-syndroom-is-nog-steeds-een-ongekende-pro 
 blematiek/ 

 EOS Wetenschap (2020, December 10). ‘Ik krijg vaak te horen dat ik overdrijf’. 
 https://www.eoswetenschap.eu/psyche-brein/ik-krijg-vaak-te-horen-dat-ik-overdrijf 

 VRT Media, Radio 2 (2020, October 30). Wat doet een menstruatiecyclus met het hoofd van de vrouw? 
 UGent onderzoekt het met gezichtsanalyse. 
 https://www.vrt.be/vrtnws/nl/2020/10/30/wat-doet-een-menstruatiecyclus-met-het-hoofd-van-de-vrouw-u 
 gent/ 

 323 

https://www.libelle.be/gezond/cyclus-en-gezondheid/
https://www.knack.be/nieuws/gezondheid/het-premenstrueel-syndroom-is-nog-steeds-een-ongekende-problematiek/
https://www.knack.be/nieuws/gezondheid/het-premenstrueel-syndroom-is-nog-steeds-een-ongekende-problematiek/
https://www.eoswetenschap.eu/psyche-brein/ik-krijg-vaak-te-horen-dat-ik-overdrijf
https://www.vrt.be/vrtnws/nl/2020/10/30/wat-doet-een-menstruatiecyclus-met-het-hoofd-van-de-vrouw-ugent/
https://www.vrt.be/vrtnws/nl/2020/10/30/wat-doet-een-menstruatiecyclus-met-het-hoofd-van-de-vrouw-ugent/


 FOLLOW ME: 

 Website:  mitchelkappen.github.io 

 Google Scholar:  https://scholar.google.nl/citations?user=CWCQD9UAAAAJ&hl=en&oi=ao 

 Research Gate:  https://www.researchgate.net/profile/Mitchel-Kappen 

 Twitter:  https://twitter.com/KappenMitchel 

 Github:  https://github.com/mitchelkappen 

 OSF:  https://osf.io/4xet9 

 Bio:  https://www.gheplab.ugent.be/labmembers/mitchel-kappen/ 

 Projects: 

 https://www.gheplab.ugent.be/projects/stress-speech 

 https://www.gheplab.ugent.be/projects/menstrual-cycle-info/ 

 324 

http://mitchelkappen.github.io/
https://scholar.google.nl/citations?user=CWCQD9UAAAAJ&hl=en&oi=ao
https://www.researchgate.net/profile/Mitchel-Kappen
https://twitter.com/KappenMitchel
https://github.com/mitchelkappen
https://osf.io/4xet9
https://www.gheplab.ugent.be/labmembers/mitchel-kappen/
https://www.gheplab.ugent.be/projects/stress-speech
https://www.gheplab.ugent.be/projects/menstrual-cycle-info/

