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Abstract
This paper introduces the Ghent Semi-spontaneous Speech Paradigm (GSSP), a new method for collecting unscripted speech 
data for affective-behavioral research in both experimental and real-world settings through the description of peer-rated 
pictures with a consistent affective load. The GSSP was designed to meet five criteria: (1) allow flexible speech recording 
durations, (2) provide a straightforward and non-interfering task, (3) allow for experimental control, (4) favor spontaneous 
speech for its prosodic richness, and (5) require minimal human interference to enable scalability. The validity of the GSSP 
was evaluated through an online task, in which this paradigm was implemented alongside a fixed-text read-aloud task. The 
results indicate that participants were able to describe images with an adequate duration, and acoustic analysis demonstrated 
a trend for most features in line with the targeted speech styles (i.e., unscripted spontaneous speech versus scripted read-aloud 
speech). A speech style classification model using acoustic features achieved a balanced accuracy of 83% on within-dataset 
validation, indicating separability between the GSSP and read-aloud speech task. Furthermore, when validating this model on 
an external dataset that contains interview and read-aloud speech, a balanced accuracy score of 70% is obtained, indicating 
an acoustic correspondence between the GSSP speech and spontaneous interviewee speech. The GSSP is of special interest 
for behavioral and speech researchers looking to capture spontaneous speech, both in longitudinal ambulatory behavioral 
studies and laboratory studies. To facilitate future research on speech styles, acoustics, and affective states, the task imple-
mentation code, the collected dataset, and analysis notebooks are available.

Keywords Acoustics · Speech · Speech collection · Psycholinguistics · Experimental research · Behavioral research · 
Speech styles · Machine learning

Introduction

Over the past few decades, the human voice and speech 
have been increasingly studied in relation to, amongst oth-
ers, psychiatric disorders (e.g., depression, schizophrenia), 
and current psychological (e.g., stress) or physiological (e.g., 
sleepiness) states (Fagherazzi et al., 2021; Van Puyvelde 
et al., 2018). To date, the primary form of speech data used 
in affective-behavioral research in an experimental setting 
remains scripted read-aloud speech gathered in highly con-
trolled laboratory environments (Van Puyvelde et al., 2018; 
Wagner et al., 2015). Scripted lab speech more conveni-
ently allows for systematic experimental control, thus limit-
ing the implicit inclusion of unwanted latent variables. As 
a result, a smaller sample size is sufficient to capture all 
degrees of freedom compared to unscripted speech gath-
ered in less controlled environments (Xu, 2010). However, 
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acoustic properties found in one speech style can be style-
specific, which limits the explanatory power of the speech 
data to other speech styles (Ernestus et al., 2015; Wagner 
et al., 2015). Therefore, a promising research direction is to 
investigate the influence of speech collection paradigms on 
both production and perception (Wagner et al., 2015). Such 
research should also examine the extent to which (affective) 
findings can be generalized across various speech registers. 
Furthermore, the scalability of speech elicitation methods 
should be considered, given that the long-term objective of 
affective sensing experiments is to facilitate wide-spread, 
real-world affect monitoring at a near continuous scale (Kap-
pen et al., 2023; Slavich et al., 2019). To this end, it is neces-
sary to investigate speech collection approaches that can be 
used, next to lab settings, in real-life environments, which 
facilitate repeated measures, but still allow for sufficient 
experimental control. As such, this would allow for transla-
tion between results concluded from lab collected speech 
and real-world setting collected speech, as long as the same 
collection approach has been used.

Prior work has indicated that vocal responses to affective 
loads may be as individual and unique as the voice itself, 
requiring more isolated studies that control for inter-indi-
vidual differences (Giddens et al., 2013; Van Puyvelde et al., 
2018). In order to address this issue, within-subject designs 
have been proposed, which allow for the collection of both 
baseline and affective data (Giddens et al., 2010, 2013; Kap-
pen  et al., 2022a, 2022b; Van Puyvelde et al., 2018). How-
ever, in these works, the acoustic analysis was conducted 
on read-aloud speech with a fixed text, which limits the 
generalizability of conclusions to the more naturalistic and 
spontaneous speech encountered in real-life settings. It has 
been demonstrated that affective states can influence deci-
sions, working memory, and information retrieval (Mikels 
& Reuter-Lorenz, 2019; Weerda et al., 2010). Therefore, 
unscripted speech, which requires larger planning units such 
as sentences, clauses, and temporal structure, can lead to 
changes in wording, grammar, and timing of speech under 
these affective states (Fromkin, 1973; Paulmann et  al., 
2016; Slavich et al., 2019). These prosodic markers are less 
pronounced in scripted speech, as fewer planning units are 
needed (Barik, 1977; Xu, 2010). Baird et al. (2019) tackled 
the within-participant challenge by developing data-driven 
models which predict cortisol concentration as a target based 
on acoustic features. Their spontaneous speech samples were 
acquired using the Trier Social Stress Tests (TSST; Kirsch-
baum et al., 1993). In more recent work, Baird et al. (2021) 
assessed the generalizability of spontaneous speech corre-
lates for stress via cortisol, heart rate, and respiration, by 
using three TSST corpora. The results show an increasing 
trend towards generalization and explanation power. How-
ever, these results are still limited, as the TSST only pro-
duces stressed speech under psychosocial load (i.e., during 

the interview), without consensus on the collection of base-
line speech.

Spontaneous speech rarely allows for controlling the fac-
tors that contribute to the phenomena of interest (Xu, 2010). 
To address this, more controlled variants of unscripted 
speech paradigms are employed, such as guided interviews 
and picture description tasks. For example, language dis-
turbances, at both the acoustic-prosodic and content level, 
have been shown to be promising markers for psychiatric 
diseases such as schizophrenia-spectrum disorders (de 
Boer et al., 2020). As a result, schizophrenia researchers 
have employed guided interview protocols as a means of 
acquiring unscripted speech (Voppel et al., 2021). Recent 
work in this area has proposed more continuous disorder 
follow-up, for which such labor-intensive interviews may 
not be an ideal match (de Boer et al., 2021). Besides guided 
interviews, researchers have used picture description tasks 
(i.e., providing an image stimulus to a participant with the 
instruction to describe the image content out loud) in the 
field of neurology, such as aphasia and Alzheimer’s (Good-
glass et al., 2001; Mueller et al., 2018). Semi-spontaneous 
picture description paradigms are here preferred over spon-
taneous speech, as the controlled and monological types of 
content are easier to obtain and analyze in clinical practice 
(Lind et al., 2009; Tucker & Mukai, 2023). Furthermore, 
by letting participants describe stimuli with consistent 
emotional loads, repeated measures are possible with little 
change in affect (Helton & Russell, 2011; Kern et al., 2005).

Given the above observations, in addition to other insights 
gleamed from previous studies and researchers, as well as 
our laboratory’s own direct experiences, we established a 
requirement list for a speech collection task that would be 
useful for both experimental research and real-world appli-
cability (Kappen et al., 2023; Kappen et al., 2022b; Slavich 
et al., 2019; Wagner et al., 2015; Xu, 2010). The task should 
(1) allow for flexible speech recording durations, ensuring 
that it can easily be incorporated into existing paradigms. 
For example, enabling the inclusion of a task at multiple 
(time-constrained) moments within an experiment allows 
for within-participant analysis. Additionally, the task should 
be (2) straightforward and non-interfering, ensuring that the 
resulting speech is not affected by the cognitive-emotional 
load of the collection method itself, but only by prior effects 
induced by the experimental paradigm. The method should 
be (3) controllable, as experimental control reduces the 
large number of samples that would be needed elsewhere 
to marginalize out latent factors (Xu, 2010). Furthermore, 
the method should (4) stimulate participants towards spon-
taneous speech, as the richness in prosody, semantics, and 
content has already been proven to be useful to derive mark-
ers in affective and cognitive research (Christodoulides, 
2016). Unscripted speech should also be more generaliz-
able to everyday speech, enabling the translation of results 
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to real-world settings and applications. Finally, the speech 
elicitation method should be (5) scalable, by requiring mini-
mal human interference during recording to allow for usabil-
ity in both longitudinal ambulatory studies with repeated 
measures and studies at scale.

This paper aims to make a significant step towards the 
application of lab results in a real-world setting by introduc-
ing the Ghent Semi-spontaneous Speech Paradigm (GSSP), 
a controllable and ecologically valid picture description 
paradigm that complies with the above requirements. By 
having participants describe an image depicting a neutral 
social setting that is not complex and that they have not 
seen before, there will be no cognitive interference of active 
recall. Whereas speech analysis for (psychosocial) stress 
and other psychological states is increasingly gaining trac-
tion, we propose these stimuli to be congruent with psy-
chosocial (stress) paradigms. That is, offering stimuli that 
would minimally interfere with elicited psychophysiological 
states of the experimental paradigm in order to (1) not risk 
the disruption of observed effects in other constructs (e.g., 
physiological reactions, rumination, etc.) due to mind wan-
dering and (2) have the collected speech closely resemble 
the active mental state experienced by participants due to the 
experimental paradigm. In accordance with the terminology 
of Tucker & Mukai (2023), the GSSP produces unscripted 
semi-spontaneous speech, given that there is a control on the 
context and content.

The selected images are empirically sampled from the 
PiSCES (Teh et al., 2018) and Radboud (Langner et al., 
2010) datasets, based on peer-rated neutral content. In order 
to minimize additional cognitive task load and biases, we 
used proper habituation instructions and images with a con-
sistent neutral emotional load. To the best of our knowledge, 
this is the first work proposing a picture description task for 
applied/real-world acoustic analysis of affective-behavioral 
states.

To summarize, the contributions of this paper are 
threefold:

• We propose the Ghent Semi-spontaneous Speech Para-
digm (GSSP), a novel speech collection paradigm using a 
picture description task for affective-behavioral research. 
The GSSP enables relatively low-effort, semi-controlled 
recording of unscripted speech data in both experimental 
and longitudinal real-life settings.

• To assess the validity of the GSSP regarding speech style, 
utterance duration, and image subset consistency, a study 
was performed using a web application. The analysis of 
the web application data indicated that participants were 
able to describe the images with sufficient duration to 
extract core speech features (i.e., longer than 15 seconds), 
and acoustic analysis suggested that the acoustic prop-
erties of the GSSP correspond to those of spontaneous 
speech.

• In order to facilitate the reproducibility of the research 
outcomes, the materials utilized in the study have been 
made openly accessible under a research-friendly license. 
The analysis scripts and web-app code are available on 
GitHub1, while the dataset and instruction videos can be 
accessed through Kaggle datasets2.

Methods: Web app for paradigm validation
In order to evaluate three key factors pertaining to the 

GSSP, namely (1) the participant's ability to engage in pro-
longed discourse, (2) the acoustical similarity between the 
gathered GSSP speech and spontaneous speech, and (3) the 
consistency of the initially selected image subset, a web 
application was developed which incorporates the GSSP 
among a standardized read-aloud task. The following sec-
tions describe the web app design and the GSSP procedure, 
followed by a specification of the participant selection pro-
cedure and the speech data processing.

Web app and procedure

The web application was developed in Python using the 
Flask framework (Grinberg, 2018). Screenshots and imple-
mentation details are found in Supplemental Material S1 
and on GitHub3. As depicted in Fig. 1, the experiment was 
divided into five blocks, with the first block consisting 
of three consecutive web pages. The first page, labeled 
“Welcome” (S1.1 Figure 1), provided a general overview 
of the study’s purpose, i.e., validating the usability of an 

Fig. 1  Flowchart of the web application experiment. Note. This results in 7 Marloes, 15 Radboud, and 15 PiSCES utterances per participant

1 https:// github. com/ predi ct- idlab/ gssp_ analy sis, https:// github. com/ 
predi ct- idlab/ gssp_ web_ app
2 https:// www. kaggle. com/ datas ets/ jonvd rdo/ gssp- web- app- data
3 https:// github. com/ predi ct- idlab/ gssp_ web_ app

https://github.com/predict-idlab/gssp_analysis
https://github.com/predict-idlab/gssp_web_app
https://github.com/predict-idlab/gssp_web_app
https://www.kaggle.com/datasets/jonvdrdo/gssp-web-app-data
https://github.com/predict-idlab/gssp_web_app
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image set for experimental speech research. The second 
page, labeled "Introduction” (S1.2 Figure 2), was used to 
acquire demographics (i.e., age, sex, recording material, 
highest obtained degree) together with the approval of the 
informed consent. The introduction page also provided an 
overview of the general guidelines for the task. In particu-
lar, it emphasized the importance of performing the task 
on a computer in a quiet and distraction-free environment. 
The complete list of (translated) guidelines can be found 
in S1.2. The third page, labeled “Task Instruction” (S1.3 
Figures 3, 4 and 5), provided detailed instructions for the 
components of this study, i.e., a 5-minute resting block 
(S1.4) to establish a neutral baseline state, followed by the 
speech collection tasks through scripted read speech (i.e., 
“Marloes”) and the GSSP. The task instruction page also 
provided three videos. The first video demonstrated the 
procedure for the reading task, in which the Marloes text is 
read-out loud with a normal reading voice. The subsequent 
two videos illustrated the GSSP picture description pro-
cess, utilizing representative images from both the PiSCES 
and Radboud datasets. It is important to note that the cho-
sen images from these datasets were not utilized as stimuli 
in the study. In addition, the instruction page presented 
the read-out-loud (“Marloes”) text and participants were 
instructed to read the text out loud. This reading exercise, 
together with the demonstration videos, aimed to reduce 
novelty effects for both the GSSP and reading task (David-
son & Smith, 1991; Weierich et al., 2010; Zuckerman, 
1990). The study asked participants to provide a descrip-
tion of each image for a minimum of 30 seconds, but no 

explicit instruction was given to adhere to this duration, 
nor was the length of the speech recording indicated to the 
subjects. Finally, as a speech quality control procedure, 
participants had to record and playback a speech sample, 
and were only permitted to proceed to the resting block 
after this microphone assessment was conducted.

The resting block consisted of a blank page featuring the 
text: “Close your eyes and try to focus on your breathing. 
You will hear a sound when the resting block is over” (trans-
lated). This step aimed to bring the participants to a neutral 
baseline state and is in alignment with Kappen et al. (2022a) 
and Kappen, Van Der Donckt, et al. (2022b).

Afterward, participants performed six iterations through 
the third and fourth block, resulting in six read-aloud seg-
ments and 30 GSSP speech samples. Finally, as shown by 
Fig. 1, a read-aloud sample was acquired in the fifth block, 
upon which the study was completed.

Read‑out‑loud text “Marloes” To acquire scripted speech 
fragments, participants were instructed to read aloud a stand-
ardized text of five sentences. The text, commonly known as 
the “Marloes” text, is widely used in Dutch speech therapy 
due to its phonetic balance (Van de Weijer & Slis, 1991; full 
text provided in S1.5). As depicted in the speech collection 
flow of Fig. 2, the “Marloes” text only became visible after 
the participant initiated the task by clicking the start button, 
which should limit the variability in preparation time. Once 
the segment has been read out loud, participants could pro-
ceed to a new page by clicking the stop button. On this page, 
two sliders were presented, which participants adjusted to 

Fig. 2  Trial flow chart of the web app speech collection task, with the 
pages translated to English. First, an empty page (a) is displayed with 
an enabled start button and a disabled stop button. When the partici-
pant clicks the start button, (b) the audio recording begins, the stop 
button will be enabled. The stimulus in the form of an image (or text 

for the read-aloud task) is being presented. After the participant com-
pletes the stimulus speech collection task, he/she or they click on the 
stop button, triggering the redirection to (c), where the participant 
reports their experienced arousal and valence values
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indicate their level of arousal and valence experienced dur-
ing the speech task (Fig. 2).

GSSP picture description speech
The unscripted speech fragments were collected in 

accordance with the read-aloud task. In order to limit the 
variability of image description preparation time, all stim-
uli were presented to the participants at the beginning of 
the recording upon clicking the start button. This approach 
ensured a degree of uniformity among participants. The 
order of the presented images was randomized, alternating 
between pictures from the PiSCES and Radboud databases. 
The first image shown was drawn from the PiSCES subset, 
followed by an image from the Radboud set, and so on. 
Each cycle consisted of a total of five pictures, resulting 
in a total of 15 images from both the PiSCES and Rad-
boud databases (as shown in Fig. 1). To ensure optimal 
audio quality, speech data was stored within the partici-
pant’s browser session using the Recorderjs JavaScript tool 
(Matt, 2016). After utterance completion, the audio data 
was converted into a 16 bit PCM mono WAV file and sent 
to a secure server, along with the experienced arousal and 
valence score.

The PiSCES database is a collection of 203 black-
and-white line drawings of individuals in social settings 
(Teh et al., 2018). These stimuli were evaluated based on 
emotional valence, intensity, and social engagement. To 
control for emotional responses, a subset of 15 images 
with neutral valence ratings and high social engagement 
scores were selected from this database for use in the 
study. The images are illustrated in Supplemental S1.6. 
Figure 7.

Similarly, the Radboud Faces Database provides a set of 
stimuli including both adult and children's faces that have 
been parametrically varied with respect to displayed expres-
sions, gaze direction, and head orientation (Langner et al., 
2010). These stimuli were evaluated based on the facial 
expression, valence, and attractiveness. The GSSP utilizes 
a subset of the neutral expression, front-facing adult images 
(seven male, eight female), which were selected based on 
their proximity of average valence scores to neutrality in 
order to minimize the potential for inducing emotional 
responses in respondents. The image subset used is depicted 
in Supplemental S1.6. Figure 8.

Drinking pause To mitigate vocal fatigue, participants were 
instructed to take a sip of water after every nine utterances 
(Welham & Maclagan, 2003).

Participants

The data were collected in two waves. First, the research 
groups’ networks were leveraged by distributing the study 
via social network sites. Second, the Prolific platform (Palan 
& Schitter, 2018) was utilized to gain an adequate number 
of participants. This resulted in a convenience sample of 
89 participants (45 female, 43 male, 1 other) with an aver-
age age of 27.54 years (SD = 6.63). The study included 
only Dutch-speaking participants residing in Belgium or the 
Netherlands whose native language was Dutch. On average, 
participants required 1 hour to complete the study.

Data processing
The audio data parsing and analysis was carried out in 

Python 3.8.13, and statistical analyses of the valence-arousal 
scores were performed using R4.1.1. For detailed version 
information of the utilized libraries, we refer to the GitHub 
repository4.

Audio data processing The audio data processing workflow 
is depicted in Fig. 3. The first step is to acquire the input 
samples (Input step), which are then converted (Transform 
step) to 16 kHz mono audio with 32-bit float precision. Due 
to technical issues, some recordings were not saved properly, 
resulting in empty audio-files that are excluded from further 
analysis during the Transform step. The non-empty trans-
formed outputs are then saved for further processing in the 
Analyze and Parse steps. Following the Transformation step, 
a participant-level manual inspection is carried out to assess 
the audio data quality (Analyze step). The inspection process 
involves utilizing customized visualizations, as illustrated in 
Fig. 4 and S2 Figure 9, to assist in the analysis process. The 
outcome of this analysis is a manual inspection sheet, which 
is used to exclude participants with inadequate audio qual-
ity. Lastly, a parsing step is performed on the transformed 

Fig. 3  Audio data processing flowchart

4 https:// github. com/ predi ct- idlab/ gssp_ analy sis

https://github.com/predict-idlab/gssp_analysis
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audio for participants whose audio quality was deemed suf-
ficient. This parsing step employs a voice activity detection 
(VAD) model (Speechbrain/Vad-Crdnn-Libriparty · Hug-
ging Face, n.d.) from the SpeechBrain toolkit (Ravanelli 
et al., 2021) to detect speech segments. The outer bounds 
of the first and last speech segments are padded with a mar-
gin of 0.25 seconds before slicing. The red shaded regions 
in Fig. 4 illustrates the regions that are omitted. As such, 
each VAD-sliced segment consists of speech data that starts 
and ends at the same relative time. This approach allows us 
to make fair comparisons between fixed duration excerpts 
(relative from VAD-slice beginning or end). Supplemental 
S2 further details the visualizations that are utilized during 
the “Analyze” step.

Acoustic speech parameter extraction The final stage of the 
parsing step entails the extraction of speech parameters. To 
control for the effects of file duration on acoustic param-
eters and repetitive start sentences in the picture description 
tasks (e.g., “I see a black and white cartoon” for the PiSCES 
database), only the last 15 voiced seconds, as determined 
by the VAD-slice, were used for both parameter extraction 
techniques listed below. Therefore, only excerpts with a 
VAD-slice duration of at least 15 seconds were included, 
resulting in 2901 samples from 82 participants (554 Mar-
loes, 1184 PiSCES, 1163 Radboud). The number of removed 
recordings per participant is portrayed in Supplemental S3, 
Figure 11.

The extraction of speech parameters was conducted using 
the openSMILE 3.0.1 Python API (Eyben et al., 2010) and 
the GeMAPSv01b functional configuration (Eyben et al., 
2016). The selection of the GeMAPSv01b configuration 
was in line with previous research (Baird et al., 2019, 2021; 
Jati et al., 2018; Kappen et al., 2022a, 2022b). Moreover, 
Triantafyllopoulos et  al. (2019) observed that the eGe-
MAPS, which is a superset of the GeMAPS, is relatively 
robust in noisy conditions. A comprehensive explanation 
of the utilized openSMILE feature subset can be found in 
Supplementals S4. During the manual inspection phase of 

the Analyze step (as illustrated in Fig. 2), differences in the 
values of openSMILE low-level descriptors (LLDs) were 
observed when the original 44.1 kHz data were resampled 
to 16 kHz. Further examination of openSMILE’s sampling-
rate inconsistencies is available in Supplemental S5. This 
examination led to superposing a small (Gaussian-sampled) 
noise of −30 dB to the resampled audio, which empirically 
improved the voiced boundary detection.

In addition to the acoustic parameter investigation, vis-
ual speech style analysis was performed via deep learning 
embeddings, generated using the ECAPA-TDNN architec-
ture (Desplanques et al., 2020). These embeddings were 
projected into a two-dimensional space using t-SNE (Van 
der Maaten & Hinton, 2008). Further implementation details 
regarding the GeMAPSv01b and ECAPA extraction proce-
dures can be found in the feature extraction and ECAPA-
TDNN notebooks, respectively5.

Finally, to evaluate the binary separability of speech 
styles in a data-driven manner, the openSMILE features 
and ECAPA-TDNN embeddings were also fed to a machine 
learning model. Specifically, logistic regression, a linear 
classification model, was used to assess this separability. 
The Scikit-learn Python toolkit by Pedregosa et al. (2011) 
was used for this purpose.

External dataset “Corpus Gesproken Nederlands” To vali-
date the generalizability of the data-driven speech style 
assessment, an external dataset was utilized. Specifically, a 
subset of the Corpus Gesproken Nederlands (CGN), i.e., the 
Corpus of Spoken Dutch, was leveraged (Oostdijk, 2000). 
CGN includes recordings of both Flemish and Netherlands 
Dutch, which are categorized into various components based 
on speech style and context settings. These components 

Fig. 4  VAD slicing with a 0.25 s margin for the first and last voiced 
segment. Note. The first voiced regions occur approximately 2 sec-
onds after the participant pressed the “start” button. The slicing 

ensures that each participant's first/last voiced segment start/end at 
the same time, allowing to make fair comparisons on fixed-duration 
excerpts relative from the VAD-slice beginning or end

5 We conducted an acoustic analysis on the duration of the entire 
utterance, and found that the results were consistent with those 
obtained from the last 15 seconds of voiced data for both the ECAPA-
TDNN projections and openSMILE features.
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range from spontaneous conversations and news broadcasts, 
to sport commentaries, sermons, and read-aloud texts. The 
corpus data is stored as 16-bit PCM 16 kHz WAV files, and 
each recording is orthographically transcribed and diarized.

Two components were chosen from the CGN dataset to 
serve as our unscripted and scripted speech styles. Compo-
nent A, “face-to-face conversations”, was deemed unsuit-
able for the unscripted speech style due to the presence 
of frequent interruptions and crosstalk in the recordings. 
Component B, “interviews with Dutch teachers”, was 
used as unscripted speech style data because the data has 
low emotional load and interviewee’s utterances have few 
interruptions and often meet the 15-second duration crite-
rion. Finally, Component O, “read-aloud texts”, served as 
scripted speech style data in our validation. In accordance 
with the acoustic parameter extraction performed on the 
web app data, excerpts of the last 15 seconds (with a mar-
gin of 2 seconds) were taken from single speaker segments 
that met the duration requirement and the openSMILE 
GeMAPS v01b configuration was applied. This resulted in 
a validation dataset of 3357 segments (1643 scripted read 
speech [comp. O] and 1714 spontaneous speech [comp. 
B]). The utterances from the validation dataset originate 
from 301 speakers, consisting of 163 female, 138 male, 
with an average age 43.12 years (SD = 14.33). Notably, 
there is no speaker overlap between the two components. 
Component specific characteristics are further detailed by 
Table 1.

Results

This section presents the results of the web app data analy-
sis. In the first subsection, we focus on the affective con-
sistency of the GSSP stimuli and present the arousal and 
valence scores. Next, the speech style of GSSP is analyzed 
using renowned acoustic features in relation to existing 
literature on speech styles. The jitter and shimmer fea-
tures trended differently from prior research, prompting 

a subsection containing a detailed exploration of this 
inconsistency. The GSSP speech style is further evaluated 
using data-driven methods, including an ECAPA-TDDN 
t-SNE projection for analysis and generalizability of the 
GSSP towards unscripted speech styles beyond the web 
app dataset.

Arousal and valence scores

As described in the methods section, the PiSCES and 
Radboud database stimuli were selected by choosing the 
closest to the middle of the valence scale in its respective 
validation studies, whilst accounting for potential thematic 
difficulties that could elicit certain emotional responses 
in subgroups of people. In doing so, we have compiled a 
picture subset that could be considered emotionally neutral 
and therefore appropriate in affective research. Addition-
ally, we have conducted a series of statistical and descrip-
tive approaches to also validate the appropriateness of our 
picture subset. These tests can be found on the analysis 
repository6, as they are not key findings in this manuscript, 
yet are of importance to assess the rigidity and validity of 
the results presented here.

In longitudinal studies, we recommend randomizing 
stimuli. Although we noticed variability in our stimuli, 
it remains sufficiently limited to warrant randomization. 
Researchers can opt to use all 15 images or select a subset 
suitable for their test frequencies, referencing the supple-
mental data provided for each image. Some study designs 
might prioritize consistent valence, while others might 
focus on arousal.

Speech feature analysis

Speech duration

The web app guidelines, as outlined in Supplemental S1.2., 
instructed the participants to discuss each image for a mini-
mum of 30 seconds. The speech task histograms in Fig. 5 
demonstrate that 88% of the GSSP utterances adhered to this 
duration requirement. It is worth noting that the 30-second 
threshold exceeds the longest voiced duration observed in 
the "Marloes" task. Consequently, this suggests that, for at 
least 88% of the GSSP samples, a greater amount of voiced 
data is available compared to what would be obtained by 
utilizing the Marloes task.

Table 1  Characteristics of selected segments from comp. B and 
comp. O

Comp. B Comp. O

Speech style unscripted 
(inter-
viewee)

scripted (read-aloud)

Number of segments 1714 1634
Number of speakers 114 187
Speaker sex of each segment: 

F/M
962/752 884/759

Age: segment based mean (SD) 41 (11) 45 (16)

6 https://github.com/predict-idlab/gssp_analysis/scripts/1.2_FactorA-
nalysis.pdf
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openSMILE acoustics

The openSMILE GeMAPSv01b acoustic features were 
partitioned into three subsets, i.e., a temporal, frequency, 

and amplitude-related subset. Each subset consists of four 
distinct features, whose detailed descriptions can be found 
in Supplemental S4. The visualization of these subsets was 
conducted using two approaches. The first approach displays 

Fig. 5  Distribution plot of the VAD-sliced utterance durations. The vertical dashed lines on the left indicate the voiced duration threshold (15 
seconds) and the lines on the right represent the instructed image description duration (30 seconds)

Fig. 6  Box plot of temporal features, grouped by collection task (row 1) and speech style (row 2)
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the features using a box plot that groups the data on speech 
collection task [Marloes (M), PiSCES (P), Radboud (R)] 
and speech style [Read, GSSP (i.e., PiSCES and Radboud)], 
with each utterance contributing a single data point to the 
corresponding task (see Figs. 6, 7 and 8). This visualization 

enables interpretation of the acoustic features in parameter 
value space. The second approach employs a violin delta-
plot, in which utterances of the same participant and speech 
task are median-aggregated and then subtracted from other 
speech task aggregations for the same participant, see 

Fig. 7  Box plot of frequency-related features, grouped by task (row 1) and speech style (row 2)

Fig. 8  Box plot of amplitude-related features, grouped by task (row 1) and speech style (row 2)
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Figure 14 of Supplemental S6. This results in each partici-
pant contributing one data point for each delta. This violin 
delta plot reveals the distribution shifts and spreads over the 
various collection tasks. More detailed information regard-
ing the violin delta plot can be found in Supplemental S6.

Temporal features The four temporal features are loudnes-
sPeaksPerSec, MeanVoicedSegmentLengthSec, MeanUn-
voicedSegmentLength, and StddevUnvoicedSegmentLength 
are shown in Fig. 6. Column (1) of Fig. 6 represents the 
number of loudness peaks, serving as a proxy for syllable 
rate (Eyben et al., 2016). The coherent distribution shift of 
the upper and lower subplot of column (1) indicates that 
the “Marloes” task has a higher articulation rate than both 
picture description tasks. This observation is consistent with 
Barik (1977) and Levin et al. (1982), which attributes this 
lower articulation rate during unscripted speech to the need 
for planning time when speaking unprepared. Column (2) 
illustrates the MeanVoicedSegmentLengthSec, which is the 
distribution of the mean sound duration, indicating slightly 
shorter voiced segments for the “Marloes” task than for the 
picture description tasks. This is in line with the notion of 
voiced segment duration being inversely proportional to the 
speaking rate [column (1)]. Furthermore, (de Silva et al., 
2003) observed a tendency towards longer sound durations 
for spontaneous speech, which is consistent with our find-
ings. Blaauw (1992) and Laan (1992) found that pauses tend 
to be more irregular and longer for spontaneous speech, as 
reflected in the MeanUnvoicedSegmentLength (3) and Std-
devUnvoicedSegmentLength (4) subplots. Based on these 
observations, we can conclude that the temporal character-
istics of the proposed semi-scripted speech paradigm are 
trending towards those of unscripted speech.7

Frequency‑related features Four frequency-related fea-
tures were utilized, i.e., F0semitoneFrom27.5Hz_sma3nz_
amean, F0semitoneFrom27.5Hz_sma3nz_stddevNorm, 
F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2, and jitter-
Local_sma3nz_amean; the mean frequency perturbation. 
Columns (1) and (2) of Fig. 7 capture the distribution of 
the fundamental frequency (F0), i.e., its mean and standard 
deviation respectively. In accordance with de Silva et al. 
(2003), no clear differences are observed between these 
acoustic parameters and speech styles. Column (3) visualizes 
the F0semitoneFrom27.5Hz_sma3nz_pctlrange0-2, which 
covers the F0-range (i.e., 20th to 80th percentile) and has 
been reported to be larger in read speech (Batliner et al., 

1995), consistent with our findings. Kraayeveld (1997) and 
Laan (1997) observed more jitter in spontaneous speech, but 
our findings indicate a significant decrease in jitter (4) for 
semi-spontaneous speech.

Amplitude‑related features Also here, four features have 
been utilized, i.e., (1) loudness_sma3_amean; the average 
loudness, (2) loudness_sma_3_percentile50.0; the median 
loudness, (3) loudness_sma3_pctlrange0-2; the 20th-to-
80th percentile loudness range, and (4) shimmerLocaldB_
sma3nZ_amean; the mean amplitude perturbation. To date, 
few results are available regarding loudness parameters and 
speech style. (Laan, 1992, 1997, p. 1) even applied ampli-
tude normalization to eliminate loudness differences in 
their experiments. Columns (1) and (2) of Fig. 8 show a 
slight increase in loudness for the reading task. The loud-
ness range, represented by column (3), is slightly larger for 
the read-aloud task. We observe a decrease in shimmer (4) 
for the picture description task, contradicting the findings of 
(Kraayeveld, 1997; Laan, 1997).

Jitter and shimmer inconsistencies The preceding sections, 
along with the effect size charts of Supplemental S9, indi-
cated a significant decrease in both jitter and shimmer for the 
unscripted GSSP task compared to the scripted read-aloud 
speech. This is in contrast to prior literature that reports the 
opposite effect, where unscripted speech produces higher jit-
ter and shimmer values than scripted speech. Therefore, we 
have included this additional section to explore the poten-
tial reasons for this inconsistency. Three potential causes 
for this potential discrepancy are presented below. The first 
plausible explanation for the acoustic differences could be 
(1) the nuances in speech styles. The current experiment 
involved participants being alone in a room and talking to a 
computer (recording device), while the previous work that 
produced contrasting results utilized interview based spon-
taneous speech (Kraayeveld, 1997; Laan, 1997). Therefore, 
a promising research direction is to investigate the acous-
tic distinctions between these nuanced speech styles (e.g. 
monologue vs. conversation, the effect of a study taker on 
monologue unscripted speech, the effect of the presence of 
an interviewer in the room). A second potential explanation 
could be that (2) the openSMILE toolkit may not be capable 
to accurately extract jitter and shimmer parameters in set-
tings with higher levels of environmental noise. Specifically, 
sound produced by environmental elements emanating peri-
odic noises such as a (computer) fan could be picked up at 
the voiced boundaries, i.e., the regions where voicing ends 
and the environmental elements become more prominent. 
openSMILE could then start to attribute voiced features on 
these environmental elements. As detailed in Supplemen-
tal S5, abnormally high F0 values were encountered near 
those voiced boundaries, which largely disappeared when 

7 We also observe that the speech rate is lower and the pauses are 
longer for the Radboud task compared to PiSCES, which might be 
caused by the homogeneity of the Radboud images, making it sub-
stantially harder to describe novel things.
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resampling the raw data and adding a small amount of dith-
ering (noise). This supplemental also presents the elevated 
values observed for the shimmer parameter. Given that read-
speech contains a greater proportion of voiced segments, 
as indicated by the higher syllable rate in Fig. 6(1), there is 
an increased frequency of voiced boundaries per time unit. 
This increase in voiced boundaries potentially contributes to 
the increase in (abnormally high) augmentation in shimmer 
and jitter values. A third explanation could be that (3) there 
is indeed a decreasing trend in shimmer and jitter values 
when analyzing less scripted speech. As outlined in Sup-
plemental S8, a visualization of the weight coefficients of a 
logistic regression model revealed that a substantial negative 
coefficient was identified for the shimmer parameter when 
the model was fitted on either the web app or CGN dataset. 
Overall, we can conclude that the trend for the majority of 
acoustic parameters are in accordance with the findings from 
literature.

Acoustic‑prosodic validation across image stimuli In order 
to assess the presence of acoustic-prosodic differences 
across the image stimuli, a delta plot, as outlined in Fig. 9, 
was created. This figure illustrates the distribution of acous-
tic features for the utilized images from both the PiSCES 
and Radboud databases. Notably, aside from picture 87 of 

PiSCES (pertaining to MeanVoicedSegmentLength), no 
large deviations are observed compared to other images. 
Figure 20 of Supplemental S10 portrays a non-participant-
normalized version of Fig. 9.

ECAPA‑TDNN projections

In addition to examining the relationship between acoustic-
prosodic features in speech styles and positioning this within 
the literature, we also wanted to investigate speech styles 
using more data-oriented techniques. To this end, the ECAPA-
TDNN architecture (Desplanques et al., 2020) was used to 
extract fixed-duration embeddings from the utterances. These 
embeddings were projected into a lower-dimensional space 
using t-distributed stochastic neighbor embedding (t-SNE, 
Van der Maaten & Hinton, 2008), the results of which are 
depicted in Fig. 10. The upper visualization (a) serves as a 
validation-check, as this demonstrates the primary objective 
of the ECAPA-TDNN architecture, which is speaker identi-
fication. Each cluster consists of a single hue-color, indicat-
ing that all cluster points originate from the same user, dem-
onstrating the successful separation of speakers. The lower 
visualization (b) employs the same projection parameters as 
(a), but uses speech style as the hue. We observe that in the 

Fig. 9  Picture delta box plot of a subset of openSmile features for both the PiSCES (column 1) and Radboud (column 2) image sets. The deltas 
are calculated by subtracting each value from the participant’s mean for the same DB set
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majority of individual speaker clusters, the “read” speech style 
utterances are grouped together. This is noteworthy as the pri-
mary goal of ECAPA-TDNN is speaker identification, which 
implies that it has little advantage in utilizing the silent parts 
of the utterances and primarily focuses on acoustic properties. 
This observation leads to the hypothesis that the speech style 
information resides within the captured acoustic properties of 
the ECAPA-TDNN architecture.

To further validate this claim, a logistic regression model 
with speech style separability as the objective was fitted on 
the embeddings. Supplemental S7, Figure 15 illustrates the 
normality of the embedding features. As such, no further 
embedding transformations were needed and the features 
were standardized by removing the mean and scaling to unit 

variance. The model achieved a balanced accuracy score 
of 84% ± 1.5% when using fivefold cross-validation with 
the speaker ID as a grouping variable. Model details can be 
found in the associated notebook8.

CGN validation

Speech style separability was also assessed using the 
GeMAPSv01b features. Figure 16 of Supplemental S7 illus-
trates the distribution of the openSMILE features, which 

(a) Hue determined by speaker ID

(b) Hue determined by speech style.

Fig. 10  Two-dimensional t-SNE projection of ECAPA-TDNN utter-
ance embeddings. (a) Hue determined by speaker ID. (b) Hue deter-
mined by speech style. Note. Each marker represents one speech 
utterance and, as illustrated by (a), each cluster of markers represents 
utterances by one speaker. When visualizing the colors of each dot 

based on its speech (trial) style (b), we see that generally the indi-
vidual speech styles cluster together within each speaker's utterances. 
This hints towards a separability of speech styles based on speaker 
identification techniques using acoustic properties

8 gssp_analysis/notebooks/0.6_ECPA_TDNN_npy.ipynb
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demonstrates a non-normal distribution for most features. As 
a result, a power transformation was applied as a preprocess-
ing step to ensure more Gaussian-like distributions (Yeo & 
Johnson, 2000). The GeMAPS model achieved a balanced 
accuracy score of 83% ± 2.5%, which is comparable to the 
results obtained from the ECAPA-TDNN model in the above 
section. A fivefold cross-validation with the speaker ID as 
the grouping variable was used as the validation setup.

Finally, to ensure maximum generalizability towards 
the CGN dataset, an educated subset of 24 GeMAPSv01b 
features was crafted based on their known contribution for 
speech style representativity. The model achieved a cross-
fold score of 81% ± 2%, using the within web app dataset 
validation setup as described in the previous paragraph. Sub-
sequently, this model was fitted on the whole web applica-
tion dataset and validated on the external CGN dataset. This 
resulted in a balanced accuracy score of 70%, as outlined by 
Table 2. Due to the distribution shift between the training 
and validation sets (e.g., other recording settings, different 
demographic groups), a decrease in accuracy compared to 
the within-web-app cross-fold accuracy was expected. The 
obtained performance indicates that the GeMAPSv01b web 
app data speech style decision boundary also holds predic-
tive power when validated on the “B” and “O” components 
of the CGN dataset, thus indicating an acoustic correspond-
ence between the picture description GSSP speech (web 
app) and the interviewee speech (CGN). Additional infor-
mation regarding the model and feature subset selection can 
be found in the associated notebook9.

Discussion

This paper presents the Ghent Semi-spontaneous Speech 
Paradigm (GSSP), a picture description task designed to 
capture speech data for affective-behavioral research in both 
experimental and real-world settings. The GSSP was devel-
oped based on the requirements identified in the field and 
literature, which were translated to a list of criteria to which 
the paradigm should adhere to. Specifically, the GSSP was 

designed to (1) allow for flexible speech recording dura-
tion, facilitating convenient incorporation into existing para-
digms, (2) present a simple and congruent task, ensuring 
that the obtained speech is not affected by the load of the 
speech elicitation method itself, (3) be controllable to limit 
the inclusion of unwanted latent factors, (4) favor unscripted 
speech for its prosodic richness and generalizability to eve-
ryday speech, and (5) require minimal human effort during 
data collection to enable use in remote and real-world set-
tings. The GSSP utilizes image stimuli that are emotion-
ally consistent within their respective image set. This ena-
bles stimuli randomization in longitudinal designs, which 
also mitigates learning effects due to familiarity with the 
stimuli (as occurs with fixed repeated stimuli). Moreover, 
both image sets are emotionally neutral, limiting confound-
ing effects when implementing the GSSP in known experi-
mental design. Lastly, we specifically designed one image 
set (PiSCES) to contain stimuli portraying social settings to 
supply researchers with emotionally neutral, yet congruent 
stimuli to be used in experimental designs using psychoso-
cial stressors (commonly used, reliable and potent stressors), 
further limiting confounding effects on stress reactions.

The validation of the GSSP was conducted using a web 
application that collected speech data from participants. In 
particular, the participants were instructed to repeatedly 
perform two tasks; a read-aloud text task and the GSSP. 
A duration analysis indicated that participants were able to 
describe images with sufficient duration, therefore adhering 
to the first criterion.

To provide a correct analysis of the study data, it is 
important to ensure that only valid speech samples are uti-
lized. Therefore, an essential contribution of this study is the 
open-source pipeline utilized to process and evaluate speech 
data, which has been instrumental in ensuring data quality 
and determining selection criteria. This methodology is not 
specific to this research and can be applied in other speech 
data studies, particularly due to its open-source nature.

To analyze the collected data with regard to speech styles, 
three analyses were performed. The first analysis was con-
cerned with relating acoustic features and existing literature 
on scripted vs. unscripted speech styles. Acoustic speech 
features, extracted using the openSMILE GeMAPSv01b 
functional configuration, exhibited a trend that is consistent 
with literature on the targeted speech styles, i.e., scripted 
read-aloud speech and unscripted spontaneous speech, there-
fore adhering to the fourth requirement. Nonetheless, the 
observed trend was not consistent across all the analyzed 
features. Specifically, the jitter (our fourth frequency-related 
feature) and the shimmer values (our fourth amplitude-
related feature) did not align with existing literature in this 
field. Jitter and shimmer both were lower for the unscripted 
GSSP task compared to the scripted read-aloud speech, 
which contradicts literature that reports the opposite effect. 

Table 2  CGN validation classification report

Precision Recall F1-score Support

Read 0.64 0.87 0.74 1643
Unscripted 0.81 0.54 0.65 1714
accuracy 0.70 3357
macro_avg 0.73 0.70 0.69 3357
weighted_avg 0.73 0.70 0.69 3357

9 gssp_analysis/notebooks/1.3_OpenSMILE_ML.ipynb
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This discrepancy can potentially be attributed to (a combi-
nation of) three reasons, which are thoroughly discussed in 
openSMILE acoustics section.

The second analysis is concerned with data driven tech-
niques. Specifically, the ECAPA-TDNN t-SNE projection, 
presented in Fig. 10, demonstrated that speaker clusters are 
further sub-grouped according to speech style. A speech 
style separability experiment on the web app data, utilizing 
the GeMAPSv01b features, yielded a balanced accuracy of 
83%, which is in agreement with the findings of Levin et al. 
(1982), who reported that listeners were able to distinguish 
between spontaneous and read-aloud speech with an accu-
racy of 84%, primarily based on temporal characteristics 
and false starts.

The third analysis assessed the generalization of the web 
app speech style separability by performing an out-of-dataset 
validation on the CGN dataset, using scripted read-aloud 
speech (comp. O) and spontaneous interviewee speech 
(comp. B). This validation resulted in a lower, but still satis-
factory, balanced accuracy score of 70%. These results indi-
cate that there is a clear separation between speech from the 
read-aloud and GSSP task, and that the acoustic properties 
of the GSSP task are in accordance with those of spontane-
ous speech from well-regarded databases. Future research 
should explore how the GSSP compares to speech styles 
other than read-aloud speech. While we used the web appli-
cation dataset to examine the GSSP's acoustic properties via 
repeated measures within a session, the primary goal of the 
paradigm is continuous monitoring. Therefore, subsequent 
studies should evaluate the GSSP across different sessions. 
Moreover, while our study effectively contrasts read versus 
semi-spontaneous speech, it does not isolate the impact of 
repetition present in Marloes but absent in GSSP, a distinc-
tion that requires further investigation.

In our analyses, we applied a 15-second duration criterion 
to facilitate comparisons between the GSSP and Marloes 
samples. Moreover, we focused our analyses on the latter 
part of the utterances to minimize the influence of similar 
starting sessions caused by the repetitive nature of our GSSP 
collection procedure. It is important to note that this choice 
of duration and the emphasis on end-of-utterance data are 
not rigid requirements, but rather decisions informed by the 
specific design of our study. Therefore, it is advisable for 
future studies utilizing the GSSP to adjust their duration 
criteria and analysis window positioning to suit their specific 
objectives and study design.

The significant variation in (quality of) utilized record-
ing devices, introduced some degree of compromise to the 
validity of the analysis. Future studies that employ this para-
digm are advised to implement stricter guidelines to limit 
the inclusion of unwanted variables (third criterion). Despite 
this limitation, the web application demonstrated the abil-
ity to deploy the GSSP at scale (fifth criterion) by needing 

no human interference during collection. Furthermore, the 
unscripted nature (fourth criterion) of this paradigm pre-
sents an opportunity to explore semantic-content aspects, 
as previous research has established the potential of these 
modalities as markers for various disorders (de Boer et al., 
2020; Mueller et al., 2018).

In conclusion, the GSSP demonstrates qualities of intui-
tiveness, scalability, accessibility, and brevity (i.e., 30–60 
seconds), making it a suitable addition to well-established 
experimental studies for collecting unscripted speech during 
key moments, such as before and after exposure to stress-
ors or emotional loads. This approach does not compromise 
other essential outcome variables and can be seamlessly 
integrated into remote-sensing applications, facilitating 
research on longitudinal mental well-being using speech 
and mood correlates (Kappen et al., 2023). We hypoth-
esize that findings obtained from utilizing the GSSP will 
be easier translatable to real-world settings, such as speech 
collected in team or board meetings, presentations, or any 
other social setting. This research aligns with the conclusion 
from Xu (2010), which states that employed speech elicita-
tion techniques need constant updates to gain increasingly 
better insights into the full complexity of speech. We are 
convinced that our presented GSSP, supported by the docu-
mented code, data10, and analysis results, enable behavioral 
researchers to incorporate an unscripted picture description 
task in their research studies. Future work should focus on 
further assessing the nuances in speech styles and investigat-
ing environmental effects on (this) paradigm(s), such as the 
presence of a study taker.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13428- 023- 02300-4.
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